957 resultados para Sport training
Resumo:
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.
Resumo:
Heart failure (HF) is associated with changes in the skeletal muscle (SM) which might be a consequence of the unbalanced local expression of pro- (TNF-alpha) and anti- (IL-10) inflammatory cytokines, leading to inflammation-induced myopathy, and SM wasting. This local effect of HF on SM may, on the other hand, contribute to systemic inflammation, as this tissue actively secretes cytokines. Since increasing evidence points out to an anti-inflammatory effect of exercise training, the goal of the present study was to investigate its effect in rats with HF after post-myocardial infarction (MI), with special regard to the expression of TNF-alpha and IL-10 in the soleus and extensor digitorum longus (EDL), muscles with different fiber composition. Wistar rats underwent left thoracotomy with ligation of the left coronary artery, and were randomly assigned to either a sedentary (Sham-operated and MI sedentary) or trained (Sham-operated and MI trained) group. Animals in the trained groups ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/week, for 8-10 weeks. The training protocol was able to reverse the changes induced by MI, decreasing TNF-alpha protein (26%, P < 0.05) and mRNA (58%, P < 0.05) levels in the soleus, when compared with the sedentary MI group. Training also increased soleus IL-10 expression (2.6-fold, P < 0.001) in post-MI HF rats. As a consequence, the IL-10/TNF-alpha ratio was increased. This ""anti-inflammatory effect"" was more pronounced in the soleus than in the EDL, suggesting a fiber composition dependent response. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Brennecke, A, Guimaraees, TM, Leone, R, Cadarci, M, Mochizuki, L, Simao, R, Amadio, AC, and Serrao, J. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method. J Strength Cond Res 23(7): 1933-1940, 2009-The purpose of the present study was to investigate the effects of exercise order on the tonic and phasic characteristics of upper-body muscle activity during bench press exercise in trained subjects. The preexhaustion method involves working a muscle or a muscle group combining a single-joint exercise immediately followed by a multi-joint exercise (e. g., flying exercise followed by bench press exercise). Twelve subjects performed 1 set of bench press exercises with and without the preexhaustion method following 2 protocols (P1-flying before bench press; P2-bench press). Both exercises were performed at a load of 10 repetition maximum (10RM). Electromyography (EMG) sampled at 1 kHz was recorded from the pectoralis major (PM), anterior deltoid (DA), and triceps brachii (TB). Kinematic data (60 Hz) were synchronized to define upward and downward phases of exercise. No significant (p > 0.05) changes were seen in tonic control of PM and DA muscles between P1 and P2. However, TB tonic aspect of neurophysiologic behavior of motor units was significantly higher (p < 0.05) during P1. Moreover, phasic control of PM, DA, and TB muscles were not affected (p > 0.05). The kinematic pattern of movement changed as a result of muscular weakness in P1. Angular velocity of the right shoulder performed during the upward phase of the bench press exercise was significantly slower (p < 0.05) during P1. Our results suggest that the strategies set by the central nervous system to provide the performance required by the exercise are held constant throughout the exercise, but the tonic aspects of the central drive are increased so as to adapt to the progressive occurrence of the neuromuscular fatigue. Changes in tonic control as a result of the muscular weakness and fatigue can cause changes in movement techniques. These changes may be related to limited ability to control mechanical loads and mechanical energy transmission to joints and passive structures.
Resumo:
Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.
Resumo:
Concurrent training is recommended for health improvement, but its acute effects on cardiovascular function are not well established. This study analyzed hemodynamics and autonomic modulation after a single session of aerobic (A), resistance (R), and concurrent (A + R) exercises. Twenty healthy subjects randomly underwent four sessions: control (C:30 min of rest), aerobic (A:30 min, cycle ergometer, 75% of VO(2) peak), resistance (R:6 exercises, 3 sets, 20 repetitions, 50% of 1 RM), and concurrent (AR: A + R). Before and after the interventions, blood pressure (BP), heart rate (HR), cardiac output (CO), and HR variability were measured. Systolic BP decreased after all the exercises, and the greatest decreases were observed after the A and AR sessions (-13 +/- 1 and -11 +/- 1 mmHg, respectively, P < 0.05). Diastolic BP decreased similarly after all the exercises, and this decrease lasted longer after the A session. CO also decreased similarly after the exercises, while systemic vascular resistance increased after the R and AR sessions in the recovery period (+4.0 +/- 1.7 and +6.3 +/- 1.9 U, respectively, P < 0.05). Stroke volume decreased, while HR increased after the exercises, and the greatest responses were observed after the AR session (SV, A = -14.6 +/- 3.6, R = -22.4 +/- 3.5 and AR = -23.4 +/- 2.4 ml; HR, A = +13 +/- 2, R = +15 +/- 2 vs. AR = +20 +/- 2 bpm, P < 0.05). Cardiac sympathovagal balance increased after the exercises, and the greatest increase was observed after the AR session (A = +0.7 +/- 0.8, R = +1.0 +/- 0.8 vs. AR = +1.2 +/- 0.8, P < 0.05). In conclusion, the association of aerobic and resistance exercises in the same training session did not potentiate postexercise hypotension, and increased cardiac sympathetic activation during the recovery period.
Resumo:
Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.
Resumo:
This paper reassesses the role of women in judo in Japan, from its secluded and restricted beginnings in the late nineteenth century to the gradual changes in gender and social paradigms triggered by the influence of Western feminist struggle from the 1960s onwards. Judo has been considered in theory an inclusive martial art because its creator, Jigoro Kano, stressed safety, etiquette and moral teachings irrespective of age, size or gender of its adherents. However, the social and cultural environment in Japan has traditionally discriminated against women both outside and inside the dojo (training place). We treat this issue historically, considering the broader context of the Japanese social, political and cultural developments.
Resumo:
Pires, FO, Hammond, J, Lima-Silva, AE, Bertuzzi, RCM, and Kiss, MAPDM. Ventilation behavior during upper-body incremental exercise. J Strength Cond Res 25(1): 225-230, 2011-This study tested the ventilation (V(E)) behavior during upper-body incremental exercise by mathematical models that calculate 1 or 2 thresholds and compared the thresholds identified by mathematical models with V-slope, ventilatory equivalent for oxygen uptake (V(E)/(V) over dotO(2)), and ventilatory equivalent for carbon dioxide uptake (V(E)/(V) over dotCO(2)). Fourteen rock climbers underwent an upper-body incremental test on a cycle ergometer with increases of approximately 20 W.min(-1) until exhaustion at a cranking frequency of approximately 90 rpm. The V(E) data were smoothed to 10-second averages for V(E) time plotting. The bisegmental and the 3-segmental linear regression models were calculated from 1 or 2 intercepts that best shared the V(E) curve in 2 or 3 linear segments. The ventilatory threshold(s) was determined mathematically by the intercept(s) obtained by bisegmental and 3-segmental models, by V-slope model, or visually by V(E)/(V) over dotO(2) and V(E)/(V) over dotCO(2). There was no difference between bisegmental (mean square error [MSE] = 35.3 +/- 32.7 l.min(-1)) and 3-segmental (MSE = 44.9 +/- 47.8 l.min(-1)) models in fitted data. There was no difference between ventilatory threshold identified by the bisegmental (28.2 +/- 6.8 ml.kg(-1).min(-1)) and second ventilatory threshold identified by the 3-segmental (30.0 +/- 5.1 ml.kg(-1).min(-1)), V(E)/(V) over dotO(2) (28.8 +/- 5.5 ml.kg(-1).min(-1)), or V-slope (28.5 +/- 5.6 ml.kg(-1).min(-1)). However, the first ventilatory threshold identified by 3-segmental (23.1 +/- 4.9 ml.kg(-1).min(-1)) or by VE/(V) over dotO(2) (24.9 +/- 4.4 ml.kg(-1).min(-1)) was different from these 4. The V(E) behavior during upper-body exercise tends to show only 1 ventilatory threshold. These findings have practical implications because this point is frequently used for aerobic training prescription in healthy subjects, athletes, and in elderly or diseased populations. The ventilatory threshold identified by V(E) curve should be used for aerobic training prescription in healthy subjects and athletes.
Resumo:
de Souza Jr, TP, Fleck, SJ, Simao, R, Dubas, JP, Pereira, B, de Brito Pacheco, EM, da Silva, AC, and de Oliveira, PR. Comparison between constant and decreasing rest intervals: influence on maximal strength and hypertrophy. J Strength Cond Res 24(7): 1843-1850, 2010-Most resistance training programs use constant rest period lengths between sets and exercises, but some programs use decreasing rest period lengths as training progresses. The aim of this study was to compare the effect on strength and hypertrophy of 8 weeks of resistance training using constant rest intervals (CIs) and decreasing rest intervals (DIs) between sets and exercises. Twenty young men recreationally trained in strength training were randomly assigned to either a CI or DI training group. During the first 2 weeks of training, 3 sets of 10-12 repetition maximum (RM) with 2-minute rest intervals between sets and exercises were performed by both groups. During the next 6 weeks of training, the CI group trained using 2 minutes between sets and exercises (4 sets of 8-10RM), and the DI group trained with DIs (2 minutes decreasing to 30 seconds) as the 6 weeks of training progressed (4 sets of 8-10RM). Total training volume of the bench press and squat were significantly lower for the DI compared to the CI group (bench press 9.4%, squat 13.9%) and weekly training volume of these same exercises was lower in the DI group from weeks 6 to 8 of training. Strength (1RM) in the bench press and squat, knee extensor and flexor isokinetic measures of peak torque, and muscle cross-sectional area (CSA) using magnetic resonance imaging were assessed pretraining and posttraining. No significant differences (p <= 0.05) were shown between the CI and DI training protocols for CSA (arm 13.8 vs. 14.5%, thigh 16.6 vs. 16.3%), 1RM (bench press 28 vs. 37%, squat 34 vs. 34%), and isokinetic peak torque. In conclusion, the results indicate that a training protocol with DI is just as effective as a CI protocol over short training periods (6 weeks) for increasing maximal strength and muscle CSA; thus, either type of program can be used over a short training period to cause strength and hypertrophy.
Resumo:
Background Falls are one of the greatest concerns among the elderly A number of studies have described peak torque as one of the best fall-related predictor. No studies have comprehensively focused on the rate of torque development of the lower limb muscles among elderly fallers. Then, the aim of this study was to determine the relationship between muscle peak torque and rate of torque development of the lower limb joints in elderly with and without fall history It was also aimed to determine whether these parameters of muscle performance (i e, peak torque and rate of torque development) are related to the number of falls. Methods: Thirty-one women volunteered to participate in the study and were assigned in one of the groups according to the number of falls over the 12 months that preceded the present Then, participants with no fall history (Cl; n = 13; 67.6[7.5] years-old), one fall (GII; n = 8, 66 0[4 91 years-old) and two or more falls (GIII, n = 10; 67.8[8.8] years-old) performed a number of lower limb maximal isometric voluntary contractions from which peak torque and rate of torque development were quantified Findings. Primary outcomes indicated no peak torque differences between experimental groups in any lower limb joint. The rate of torque development of the knee flexor muscles observed in the non-fallers (Cl) was greater than that observed in the fallers (P < 0.05) and had a significant relationship with the number of falls (P < 0 05) Interpretation. The greater knee flexor muscles` rate of torque development found in the non-fallers in comparison to the fallers indicated that the ability of the elderly to rapidly reorganise the arrangement of the lower limb may play a significant role in allowing the elderly to recover balance after a trip. Thus, training stimulus aimed to improve the rate of torque development may be more beneficial to prevent falls among the elderly than other training stimulus, which are not specifically designed to improve the ability to rapidly produce large amounts of torque (C) 2010 Published by Elsevier Ltd
Resumo:
The aim of the study was to evaluate the possible relationships between stress tolerance, training load, banal infections and salivary parameters during 4 weeks of regular training in fifteen basketball players. The Daily Analysis of Life Demands for Athletes` questionnaire (sources and symptoms of stress) and the Wisconsin Upper Respiratory Symptom Survey were used on a weekly basis. Salivary cortisol and salivary immunoglobulin A (SIgA) were collected at the beginning (before) and after the study, and measured by enzyme-linked immunosorbent assay (ELISA). Ratings of perceived exertion (training load) were also obtained. The results from ANOVA with repeated measures showed greater training loads, number of upper respiratory tract infection episodes and negative sensation to both symptoms and sources of stress, at week 2 (p < 0.05). Significant increases in cortisol levels and decreases in SIgA secretion rate were noted (before to after). Negative sensations to symptoms of stress at week 4 were inversely and significantly correlated with SIgA secretion rate. A positive and significant relationship between sources and symptoms of stress at week 4 and cortisol levels were verified. In summary, an approach incorporating in conjunction psychometric tools and salivary biomarkers could be an efficient means of monitoring reaction to stress in sport. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Moreira, A, Arsati, F, Cury, PR, Franciscon, C, Oliveira, PR, and Araujo, VC. Salivary immunoglobulin a response to a match in top-level brazilian soccer players. J Strength Cond Res 23(7): 1968-1973, 2009-It has been suggested that several parameters of mucosal immunity, including salivary immunoglobulin A (s-IgA), are affected by heavy exercise either in field sports or in the laboratory environment. Few observations have been made during a true sporting environment, particularly in professional soccer. We tested the hypothesis that salivary IgA levels will be decreased after a 70-minute regulation in a top-level professional soccer friendly match. Saliva samples from 24 male professional soccer players collected before and after the match were analyzed. Salivary immunoglobulin A concentration was measured by enzyme-linked immunosorbent assay and expressed as the absolute concentration (s-IgAabs), s-IgA relative to total protein concentration (IgA-Pro), and the secretion rate of IgA (s-IgArate). Rate of perceived exertion (RPE) was used to monitor the exercise intensity. The paired t-test showed no significant changes in s-IgAabs and s-IgArate (p > 0.05) from PRE to POST match. However, a significant (p < 0.05) increase in total protein concentration (1.46 +/- 0.4 to 2.00 +/- 07) and a decrease in IgA-Pro were observed. The best and most significant correlation was obtained with the RPE and changes in IgA-Pro (rs = -0.43) and could indicate that this expression may be an interesting marker of intensity in a soccer match. However, further investigation regarding exercise intensity, protein concentration, and immune suppression, particularly in team sports, is warranted. From a practical application, the variability of the responses among the players leads us to suggest that there is a need to individually analyze the results with team sports. Some athletes showed a decrease in s-IgA expressions, suggesting the need for taking protective actions to minimize contact with cold viruses or even reducing the training load.
Resumo:
Matsushigue, KA, Hartmann, K, and Franchini, E. Taekwondo: Physiological responses and match analysis. J Strength Cond Res 23(4): 1112-1117, 2009-The aim of the present study was to determine the time structure and physiological responses during Songahm Taekwondo (TKD) competition and to compare these variables between winner and non-winner athletes. Fourteen men subjects were analyzed. Blood lactate concentration (LA) and heart rate (HR) were determined before and after the match. The match was filmed for the determination of the number of techniques used, the duration of effort and rest periods (RPs), and the interval between high-intensity movements (HM). Post-match LA was 7.5 +/- 3.8 mmol.L(-1), HR was 183 +/- 9 b.min(-1), and HM was 31 +/- 16 seconds. The mean effort time (862 seconds) did not differ from mean interval time (8 +/- 3 seconds). Winners used a smaller total number of techniques, but post-match LA or HR did not differ from that of non-winners. In conclusion, the glycolytic metabolism was not the predominant energy source and the physiological responses did not differ between winners and non-winners. Coaches and sports scientists should prepare a technical or physical training session considering the low glycolytic contribution in this sport, hence the training protocol should involve high-intensity movements interspersed with longer RPs to provide the creatine phosphate recovery, with special attention given to the technical quality of TKD skills and not to higher technique volume during a simulation of matches.
Resumo:
We have tested the hypothesis that salivary cortisol increases after a competitive training match in top-level male professional soccer players divided in team A (n = 11) versus team B (n = 11). Saliva samples collected before and after the match were analyzed. Salivary cortisol concentrations were measured by enzyme-linked immunosorbent assay. The results from a two-way ANOVA with repeated measures showed no significant changes in salivary cortisol between either teams or time points (P > 0.05). Further investigation regarding competitive matches in a competition environment is warranted. In summary, the influence of intensive competitive training match alone appears to be minimal on salivary cortisol changes in top-level soccer adapted to this type of stress. From a practical application, the variability of the responses among the players leads us to suggest that there is a need to individually analyse the results with team sports.