933 resultados para Spinal column
Resumo:
This paper presents the findings of a project part sponsored by an ICE Research and Development grant on portal frames in fire. The research reported here has also lead to a sucessful research grant from the IStructE. The paper describes a non-linear elasto plastic dynamic finite element model that captures the collapse of a portal frame in fire. It demonstrates that current guidance on the column base stiffness and strength, to prevent collapse, may in some cases be unconservative.
Resumo:
Introduction Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. The present study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Methods Bladders from SCI (T8/9 transection) and sham-operated rats five-weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Results Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. Conclusions IC populations in bladder wall were decreased five weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.
Resumo:
There were three objectives to the present study: (1) compare the bladder infection rate and extent of biofilm formation for seven untreated spinal cord injured (SCI) patients and seven given prophylactic co-trimoxazole, (2) identify a level of bacterial adhesion to bladder cells which could be used to help predict symptomatic infection, and (3) determine from in vivo and in vitro studies whether fluoroquinolones were effective at penetrating bacterial biofilms. The results showed that the infection rate had not changed with the introduction of prophylaxis. However, the uropathogenic population had altered subsequent to the introduction of prophylaxis with E. coli being replaced by E. faecalis as the most common cause of infection. In 63% of the specimens from asymptomatic patients, the bacterial counts per cell were <20, while 81% of specimens from patients with at least one sign and one symptom of urinary tract infection (UTI) had > 20 adherent bacteria per bladder cell. Therefore, it is proposed that counts of > 20 bacteria adherent to sediment transitional epithelial bladder cells may be predictive of symptomatic UTI. Clinical data showed that fluoroquinolone therapy reduced the adhesion counts to <20 per cell in 63% of cases, while trimethoprim-sulfamethoxazole only did so in 44%. Further in vitro testing showed that ciprofloxacin (0.1, 0.5 and 1.0 micrograms/ml) partially or completely eradicated adherent biofilms from 92% of spinal cord injured patients' bladder cells, while ofloxacin did so in 71% cases and norfloxacin in 56%. These findings have important implications for the detection and treatment of bacteriuria in spinal cord injured patients.
Resumo:
The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto H PO -acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of potential adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol·L ), flow rate (1.0-3.1 cm ·min ), ionic strength (0.01-0.30 mmol·L ) and adsorbent mass (0.11-0.465 g) on Cr(VI) adsorption were studied by assessing the microcolumn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process. © 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP).