966 resultados para Sodum chloride (KCl)
Resumo:
Mercury is a xenobiotic metal that is a highly deleterious environmental pollutant. The biotransformation of mercury chloride (HgCl2) into methylmercury chloride (CH3HgCl) in aquatic environments is well-known and humans are exposed by consumption of contaminated fish, shellfish and algae. The objective of the present study was to determine the changes induced in vitro by two mercury compounds (HgCl2 and CH3HgCl) in cultured human lymphocytes. Short-term human leukocyte cultures from 10 healthy donors (5 females and 5 males) were set-up by adding drops of whole blood in complete medium. Cultures were separately and simultaneously treated with low doses (0.1 to 1000 µg/l) of HgCl2 and CH3HgCl and incubated at 37ºC for 48 h. Genotoxicity was assessed by chromosome aberrations and polyploid cells. Mitotic index was used as a measure of cytotoxicity. A significant increase (P < 0.05) in the relative frequency of chromosome aberrations was observed for all concentrations of CH3HgCl when compared to control, whether alone or in an evident sinergistic combination with HgCl2. The frequency of polyploid cells was also significantly increased (P < 0.05) when compared to control after exposure to all concentrations of CH3HgCl alone or in combination with HgCl2. CH3HgCl significantly decreased (P < 0.05) the mitotic index at 100 and 1000 µg/l alone, and at 1, 10, 100, and 1000 µg/l when combined with HgCl2, showing a synergistic cytotoxic effect. Our data showed that low concentrations of CH3HgCl might be cytotoxic/genotoxic. Such effects may indicate early cellular changes with possible biological consequences and should be considered in the preliminary evaluation of the risks of populations exposed in vivo to low doses of mercury.
Resumo:
To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-aprotein kinase C (aPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and aPKC (aPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and aPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar aPKC-IR cell density (mean density = 1306 ± 393 cells/mm2) compared to control (1886 ± 892 cells/mm2; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm2 (2 µg/g) and 845 ± 82 cells/mm2 (6 µg/g), also lower than control (1312 ± 31 cells/mm2; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of aKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde.
Resumo:
The objective of this research was to evaluate the effects of rates and sources of potassium in top dressing on yield of cabbage hybrid Kenzan. Two experiments were conducted (15/07 to 22/11/2010 and 28/09/2010 to 27/01/2011) and nine treatments, resulted from a factorial 4 rates (45; 90; 135 and 180 kg ha(-1) of K2O) x 2 sources (KCl and K2SO4) + 1 control (without K in top dressing) were evaluated at randomized block design, with 4 replicates. After the harvest, fresh and dry weight of cabbage head and of external leaves; leaf number (from cabbage and external); diameter and height of cabbage head were evaluated. It was evaluated soil chemical characteristics at the end of first experiment and content of macro and micronutrients in plants. It was observed that potassium rates and sources did not influence most of evaluated characteristics. K content in plant increased linearly with KCl application. Results obtained show that, probably, it is not necessary application of K in top dressing when base fertilization is done with this nutrient, besides existing recommendations for this crop.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents results describing the physical, mechanical, and thermal properties (melt flow index - MFI and oxidative induction time - OIT) of high density polyethylene and poly (vinyl chloride) after weathering exposure (6, 12, 18, and 30 months). The materials exposed were geomembranes of two thicknesses: 1.0 and 2.0 mm (PVC) and 0.8 and 2.5 mm (HDPE). The climate parameters (average) obtained were 25 degrees C (temperature), 93 mm (precipitation), 66% (relative humidity), and 19 MJ/m(2). day (intensity of global radiation). Some results showed, for instance, that the behavior of the geomembranes changed after the exposures. A few minor variations in physical properties occurred. The density and thickness, for instance, varied 0.5-1.0% (average) for both the PVC and HDPE geomembranes. The mechanical properties changed as a function of the period of exposure. In general, some decreases were verified by the deformation of PVC. The samples became more rigid. In contrast, HDPE geomembranes became more ductile. Despite the variations in elasticity, some increases in deformability were verified. An MFI test showed some degradation in HDPE geomembranes. OIT tests revealed small values for both intact and exposed samples.
Resumo:
Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of the addition of 5% calcium chlorite (CaCl2) on pH values in calcium hydroxide pastes (CH), with or without 2% chlorhexidine digluconate (CHX) used as vehicle, in several periods analysis. Polyethylene tubes were filled with CH mixed with water (G1), 2% CHX solution (G2) or gel (G3), or CHX solution or gel with 5% CaCl2 (G4 and G5, respectively). All tubes were individually immersed in distilled water. After 12, 24 hours, 7, 14 and 28 days, pH value was evaluated directly in water which the tubes were stored. Data were submitted to ANOVA and Tukey tests (α=0.05). In 24 hs and 14 days, pH values were similar to all groups. In 12 hs, the G1 presented lower pH value than other groups except to G4 (p < 0.05), and G4 presented lower pH value than G5 (p < 0.05). In 7 days, G1 presented lower pH value than G4 and G5 (p < 0.05). In 28 days, G1 and G5 presented lower pH values than G2 and G4 (p < 0.05) and among other groups there are no statistical differences (p > 0.05). The pH values increased in long-term analysis to all CH pastes. The association of 5% calcium chloride with 2% CHX solution as vehicle of CH paste provided a pH value increase in relation to CH mixed with distilled water. The CHX gel interfered negatively on pH value in comparison to CHX solution when mixed with CaCl2.
Resumo:
Objective: The purpose of this study was to evaluate the influence of the addition of 2% chlorhexidine digluconate (CHX) associated with 5% calcium chloride (CaCl2 ) on antimicrobial activity, setting time, pH and calcium release of gray mineral trioxide aggregate (GMTA). Materials and Methods: GMTA powder was mixed with water, 2% CHX alone or 2% CHX combined with 5% CaCl2 . Antimicrobial activity was determined against Enterococcus faecalis (ATCC 29212) strains by agar diffusion test. Data obtained were submitted to kruskal wallis tests. Analysis of the setting time was evaluated by American society for testing and materials C266-03 requirements. The pH and calcium release analysis were evaluated, in 24 h, 7, 14 and 28 days using pH meter equipment and atomic absorption spectrophotometer, respectively. Data obtained were analyzed by ANOVA, in 5% significance level. Results: Significant differences were seen (P < 0.01) among the zones of bacterial growth inhibition produced by 5% CaCl2 + 2% CHX combination against E. faecalis when compared with water (P < 0.05). Regarding the setting time, that combination had the shortest setting time (P < 0.05). All associations were alkaline and released calcium. No statistical difference was observed between the experimental groups at the different periods of analysis (P > 0.05). Conclusion: Combination of 5% CaCl2 + 2% CHX reduced the setting time and enhanced the antimicrobial activity of GMTA without changing the pH and calcium release.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of an amperometric biosensor for the salicylate determination in blood serum is described. The biosensor is based on salicylate hydroxylase (EC 1.14.13.1) electropolymerized onto a glassy carbon-working electrode with polypyrrole and glutaraldehyde, to improve the biosensor lifetime. The hexacyanoferrate (II) was also incorporated to work as a redox mediator to minimize possible interferences. The salicylate is enzymatically converted to catechol, which is monitored amperometrically by its electrooxidation at +0.170 V versus SCE (saturated calomel electrode). Salicylate determination was carried out maintaining the ratio between β-NADH and salicylate at 4:1 (30°C). The amperometric response of the biosensor was linearly proportional to the salicylate concentration between 2.3 x 10-6 and 1.4 x 10-5 mol l- 1, in 0.1 mol l-1 phosphate buffer (pH 7.8), containing 0.1 mol l-1 KCl and 5.0 x 10-4 mol l-1 Na2H2EDTA, as supporting electrolyte. The recovery studies, in the presence of several interfering compounds, showed recoveries between 96.4 and 104.8%. The useful lifetime of the biosensor in the concentration range evaluated was at least 40 days, in continuous use. Blood serum samples analyzed by this biosensor showed a good correlation compared to the spectrophotometric method (Trinder) used as reference, presenting relative deviations lower than 7.0%. (C) 2000 Elsevier Science B.V.
Resumo:
Sodium chloride intake was studied in rats submitted to different neurosurgical procedures. Intake decreased in animals submitted to bilateral destruction of the basolateral amygdaloid complex, and increased after the same animals were submitted to destruction of the anterior lateral hypothalamus, a procedure which is known to cause increased intake in intact rats. In the reverse experiment, where the anterior lateral hypothalamus was destroyed before the basolateral amygdaloid complex, the effect of increased sodium chloride intake induced by destruction of the hypothalamus overcame the decreased expected upon destruction of the amygdaloid complex. These results permit us to conclude that the hypothalamic areas which inhibit sodium chloride intake predominate over the stimulating areas of the amygdaloid complex in the control of sodium chloride intake. © 1981 ANKHO International Inc.
Resumo:
Para produzir o termopotássio e, até mesmo, o KCl, a rocha silicática potássica (verdete) passa pelo processo de calcinação. Neste processo é gerado um resíduo denominado coproduto que contém em sua composição química 3% a 4% de K2O, Ca, Mg e Si e apresenta baixa solubilidade em água. O presente trabalho objetivou testar a hipótese de que doses de K2O na forma de coproduto fornecem potássio para as plantas de milho em menor quantidade do que as mesmas doses na forma de KCl, inclusive no estudo do efeito residual, e que o potássio extraído do solo pela resina trocadora de íons tem maior correlação com as quantidades de potássio absorvida pela planta de milho do que com o potássio extraído pela solução extratora de Mehlich-1. O experimento foi conduzido em casa de vegetação, onde foram realizados dois cultivos consecutivos de milho em amostras de Neossolo Quartizarênico órtico. O delineamento foi em blocos casualizados com duas fontes de K (KCl e coproduto), três doses de K2O (0, 200 e 400 kg ha-1) e quatro repetições, totalizando 24 unidades experimentais. Foram determinados os teores de potássio extraído da amostra de solo pela solução extratora de Mehlich-1 e resina trocadora de íons, a produção de matéria seca da parte aérea das plantas de milho, os teores e o acumulo de potássio nas plantas após o primeiro e o segundo cultivo. Em dois cultivos consecutivos das plantas de milho, a aplicação de 200 e 400 kg ha-1 de K2O na forma de KCl proporcionou o acumulo de potássio na parte aérea das plantas de 77 e 84% maior do que aplicação dessas mesmas doses de K2O na forma de coproduto, respectivamente. A aplicação de 200 e 400 kg ha-1 de K2O na forma de coproduto proporcionou aumentos no acumulo de potássio da parte aérea das plantas de milho de 66 e 75% em relação ao controle (sem K2O), respectivamente. A recuperação de potássio pelas plantas de milho tratadas com KCl foi de 92% e as plantas...