893 resultados para Shape-from-texture
Resumo:
The Jurassic Muskox and Jericho kimberlites (Northern Slave Province, Nunavut, Canada) contain a variety of facies exhibiting different geometries, contact relationships, internal organisation, country rock abundance and olivine shapes, although many have similar matrix/groundmass mineralogies and textures. Five facies are examined that either have characteristics consistent with coherent rocks in general (i.e. intrusive and extrusive non-fragmental rocks) or are mineralogically and texturally similar to kimberlite described as coherent (or apparent coherent). Three facies are interpreted as coherent on the basis of: (1) geological setting, (2) apparent-porphyritic texture, (3) sharp contacts with fragmental kimberlite, (4) relative abundance of elongate and unbroken olivine crystals and (5) paucity of country rock xenoliths, while the remaining two facies are interpreted as fragmental on the basis of: (1) the gradational contacts with demonstrably fragmental kimberlite, (2) relative abundance and range of sizes of country rock lithic clasts and (3) numerous broken olivine crystals. Comparisons are made with coherent and apparent-coherent kimberlite from the literature. Our three coherent facies are similar to literature reported coherent kimberlite dykes hosted in country rock (CKd) in terms of internal organisation, low abundance of country rock xenoliths, and apparent-porphyritic texture. Conversely, our two fragmental facies share attributes with previously described pipe-filling coherent and apparent-coherent kimberlite (CKpf) in terms of geometry, internal organisation and abundance of country rock xenoliths. We conclude that CKd and most CKpf, although similar in matrix/groundmass mineralogy and texture, can be distinguished on the basis of internal organisation, country rock lithic clast abundance, texture (e.g. apparent-porphyritic texture) and possibly olivine crystal shapes and suggest that fragmental kimberlite is more common than reported.
Resumo:
Kimberlite drill core from the Muskox pipe (Northern Slave Province, Nunavut, Canada) highlights the difficulties in distinguishing coherent from fragmental kimberlite and assessing the volcanological implications of the apparent gradational contact between the two facies. Using field log data, petrography, and several methods to quantify crystal and xenolith sizes and abundances, the pipe is divided into two main facies, dark-coloured massive kimberlite (DMK) and light-coloured fragmental kimberlite (LFK). DMK is massive and homogeneous, containing country-rock lithic clasts (~ 10%) and olivine macrocrysts (~ 15%) set in a dark, typically well crystallised, interstitial medium containing abundant microphenocrysts of olivine (~ 15%), opaques and locally monticellite, all of which are enclosed by mostly serpentine. In general, LFK is also massive and structureless, containing ~ 20% country-rock lithic clasts and ~ 12% olivine macrocrysts. These framework components are supported in a matrix of serpentinized olivine microphenocrysts (10%), microlites of clinopyroxene, and phlogopite, all of which are enclosed by serpentine. The contact between DMK and LFK facies is rarely sharp, and more commonly is gradational (from 5 cm to ~ 10 m). The contact divides the pipe roughly in half and is sub-vertical with an irregular shape, locally placing DMK facies both above and below the fragmental rocks. Most features of DMK are consistent with a fragmental origin, particularly the crystal- and xenolith-rich nature (~ 55-65%), but there are some similarities with rocks described as coherent kimberlite in the literature. We discuss possible origins of gradational contacts and consider the significance for understanding the origin of the DMK facies, with an emphasis on the complications of alteration overprinting of primary textures.
Resumo:
Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models have a more factual, descriptive basis, but are still inadequately documented given the recency of their discovery. The diversity amongst kimberlite bodies suggests that a three-model classification is an over-simplification. Every kimberlite is altered to varying degrees, which is an intrinsic consequence of the ultrabasic composition of kimberlite and the in-vent context; few preserve original textures. The effects of syn- to post-emplacement alteration on original textures have not been adequately considered to date, and should be back-stripped to identify original textural elements and configurations. Applying sedimentological textural configurations as a guide to emplacement processes would be useful. The traditional terminology has many connotations about spatial position in pipe and of process. Perhaps the traditional terminology can be retained in the industrial situation as a general lithofacies-mining terminological scheme because it is so entrenched. However, for research purposes a more descriptive lithofacies terminology should be adopted to facilitate detailed understanding of deposit characteristics, important variations in these, and the process origins. For example every deposit of TKB is different in componentry, texture, or depositional structure. However, because so many deposits in many different pipes are called TKB, there is an implication that they are all similar and that similar processes were involved, which is far from clear.
Resumo:
This paper introduces research in progress that examines how queer women perform sexual identity across social media platforms. Applying a lens of queer theory and Actor Network Theory, it discusses women’s embodied self-representations as taking on forms that both conform to and elaborate upon the selfie genre of digital representation. Acknowledging similarities and differences across platforms, specifically between Instagram and Vine, a novel walkthrough method is introduced to identify platform characteristics that shape identity performances. This method provides insights into the role of platforms in identity performances, which can be combined with analysis of user-generated content and interviews to better understand digital media’s constraints and affordances for queer representation.
Resumo:
Despite substantial progress in measuring the 3D profile of anatomical variations in the human brain, their genetic and environmental causes remain enigmatic. We developed an automated system to identify and map genetic and environmental effects on brain structure in large brain MRI databases . We applied our multi-template segmentation approach ("Multi-Atlas Fluid Image Alignment") to fluidly propagate hand-labeled parameterized surface meshes into 116 scans of twins (60 identical, 56 fraternal), labeling the lateral ventricles. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps revealed 3D heritability patterns, and their significance, with and without adjustments for global brain scale. These maps visualized detailed profiles of environmental versus genetic influences on the brain, extending genetic models to spatially detailed, automatically computed, 3D maps.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles, designed for monitoring degenerative disease effects in clinical neuroscience studies and drug trials. First we used a set of parameterized surfaces to represent the ventricles in a manually labeled set of 9 subjects' MRIs (atlases). We fluidly registered each of these atlases and mesh models to a set of MRIs from 12 Alzheimer's disease (AD) patients and 14 matched healthy elderly subjects, and we averaged the resulting meshes for each of these images. Validation experiments on expert segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease-related alterations monotonically improved as the number of atlases, N, was increased from 1 to 9. We then combined the segmentations with a radial mapping approach to localize ventricular shape differences in patients. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases, and we formulated a statistical stopping criterion to determine the optimal value of N. Anterior horn anomalies in Alzheimer's patients were only detected with the multi-atlas segmentation, which clearly outperformed the standard single-atlas approach.
Resumo:
We propose in this paper a new method for the mapping of hippocampal (HC) surfaces to establish correspondences between points on HC surfaces and enable localized HC shape analysis. A novel geometric feature, the intrinsic shape context, is defined to capture the global characteristics of the HC shapes. Based on this intrinsic feature, an automatic algorithm is developed to detect a set of landmark curves that are stable across population. The direct map between a source and target HC surface is then solved as the minimizer of a harmonic energy function defined on the source surface with landmark constraints. For numerical solutions, we compute the map with the approach of solving partial differential equations on implicit surfaces. The direct mapping method has the following properties: (1) it has the advantage of being automatic; (2) it is invariant to the pose of HC shapes. In our experiments, we apply the direct mapping method to study temporal changes of HC asymmetry in Alzheimer's disease (AD) using HC surfaces from 12 AD patients and 14 normal controls. Our results show that the AD group has a different trend in temporal changes of HC asymmetry than the group of normal controls. We also demonstrate the flexibility of the direct mapping method by applying it to construct spherical maps of HC surfaces. Spherical harmonics (SPHARM) analysis is then applied and it confirms our results on temporal changes of HC asymmetry in AD.
Resumo:
Determining the genetic bases of adaptations and their roles in speciation is a prominent issue in evolutionary biology. Cichlid fish species flocks are a prime example of recent rapid radiations, often associated with adaptive phenotypic divergence from a common ancestor within a short period of time. In several radiations of freshwater fishes, divergence in ecomorphological traits - including body shape, colour, lips and jaws - is thought to underlie their ecological differentiation, specialization and, ultimately, speciation. The Midas cichlid species complex (Amphilophus spp.) of Nicaragua provides one of the few known examples of sympatric speciation where species have rapidly evolved different but parallel morphologies in young crater lakes. This study identified significant QTL for body shape using SNPs generated via ddRAD sequencing and geometric morphometric analyses of a cross between two ecologically and morphologically divergent, sympatric cichlid species endemic to crater Lake Apoyo: an elongated limnetic species (Amphilophus zaliosus) and a high-bodied benthic species (Amphilophus astorquii). A total of 453 genome-wide informative SNPs were identified in 240 F-2 hybrids. These markers were used to construct a genetic map in which 25 linkage groups were resolved. Seventy-two segregating SNPs were linked to 11 QTL. By annotating the two most highly supported QTL-linked genomic regions, genes that might contribute to divergence in body shape along the benthic-limnetic axis in Midas cichlid sympatric adaptive radiations were identified. These results suggest that few genomic regions of large effect contribute to early stage divergence in Midas cichlids.
Resumo:
We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.
Resumo:
Japan is in the midst of massive law reform. Mired in ongoing recession since the early 1990s, Japan has been implementing a new regulatory blueprint to kickstart a sluggish economy through structural change. A key element to this reform process is a rethink of corporate governance and its stakeholder relations. With a patchwork of legislative initiatives in areas as diverse as corporate law, finance, labour relations, consumer protection, public administration and civil justice, this new model is beginning to take shape. But to what extent does this model represent a break from the past? Some commentators are breathlessly predicting the "Americanisation" of Japanese law. They see the triumph of Western-style capitalism - the "End of History", to borrow the words of Francis Fukuyama - with its emphasis on market-based, arms-length transactions. Others are more cautious, advancing the view that there new reforms are merely "creative twists" on what is a uniquely (although slowly evolving) strand of Japanese capitalism. This paper takes issue with both interpretations. It argues that the new reforms merely follow Japan's long tradition of 'adopting and adapting' foreign models to suit domestic purposes. They are neither the wholesale importation of "Anglo-Saxon" regulatory principles nor a thin veneer over a 'uniquely unique' form of Confucian cultural capitalism. Rather, they represent a specific and largely political solution (conservative reformism) to a current economic problem (recession). The larger themes of this paper are 'change' and 'continuity'. 'Change' suggests evolution to something identifiable; 'continuity' suggests adhering to an existing state of affairs. Although notionally opposites, 'change' and 'continuity' have something in common - they both suggest some form of predictability and coherence in regulatory reform. Our paper, by contrast, submits that Japanese corporate governance reform or, indeed, law reform more generally in Japan, is context-specific, multi-layered (with different dimensions not necessarily pulling all in the same direction for example, in relations with key outside suppliers), and therefore more random or 'chaotic'.
Resumo:
Spin-state equilibria in the whole set of LCoO3 (where L stands for a rare-earth metal or Y) have been investigated with the use of 59Co NMR as a probe for the polycrystalline samples (except Ce) in the temperature interval 110-550 K and frequency range 3- 11.6 MHz. Besides confirming the coexistence of the high-spin—low-spin state in this temperature range, a quadrupolar interaction of ∼0.1 -0.5 MHz has been detected for the first time from 59Co NMR. The NMR line shape is found to depend strongly on the relative magnitude of the magnetic and quadrupolar interactions present. Analysis of the powder pattern reveals two basically different types of transferred hyperfine interaction between the lighter and heavier members of the rare-earth series. The first three members of the lighter rare-earth metals La, Pr (rhombohedral), and Nd (tetragonal), exhibit second-order quadrupolar interaction with a zero-asymmetry parameter at lower temperatures. Above a critical temperature TS (dependent on the size of the rare-earth ion), the quadrupolar interaction becomes temperature dependent and eventually gives rise to a first-order interaction thus indicating a possible second-order phase change. Sm and Eu (orthorhombic) exhibit also a second-order quadrupolar interaction with a nonzero asymmetry parameter ((η∼0.47)) at 300 K, while the orthorhombic second-half members (Dy,..., Lu and Y) exhibit first-order quadrupolar interaction at all temperatures. Normal paramagnetic behavior, i.e., a linear variation of Kiso with T-1, has been observed in the heavier rare-earth cobaltites (Er,..., Lu and Y), whereas an anomalous variation has been observed in (La,..., Nd)CoO3. Thus, Kiso increases with increasing temperature in PrCoO3 and NdCoO3. These observations corroborate the model of the spin-state equilibria in LCoO3 originally proposed by Raccah and Goodenough. A high-spin—low-spin ratio, r=1, can be stabilized in the perovskite structure by a cooperative displacement of the oxygen atoms from the high-spin towards the low-spin cation. Where this ordering into high- and low-spin sublattices occurs at r=1, one can anticipate equivalent displacement of all near-neighbor oxygen atoms towards a low-spin cobalt ion. Thus the heavier LCoO3 exhibits a small temperature-independent first-order quadrupolar interaction. Where r<1, the high- and low-spin states are disordered, giving rise to a temperature-dependent second-order quadrupolar interaction with an anomalous Kiso for the lighter LCoO3.
Resumo:
Tutkimuksessa analysoidaan kaaosteorian vaikutusta kaunokirjallisuudessa ja kirjallisuudentutkimuksessa ja esitetään, että kaaosteorian roolia kirjallisuuden kentällä voidaan parhaiten ymmärtää sen avaamien käsitteiden kautta. Suoran soveltamisen sijaan kaaosteorian avulla on käyty uudenlaisia keskusteluja vanhoista aiheista ja luonnontieteestä ammennetut käsitteet ovat johtaneet aiemmin tukkeutuneiden argumenttien avaamiseen uudesta näkökulmasta käsin. Väitöskirjassa keskitytään kolmeen osa-alueeseen: kaunokirjallisen teoksen rakenteen teoretisointiin, ihmisen (erityisesti tekijän) identiteetin hahmottamiseen ja kuvailemiseen sekä fiktion ja todellisuuden suhteen pohdintaan. Tutkimuksen tarkoituksena on osoittaa, kuinka kaaosteorian kautta näitä aiheita on lähestytty niin kirjallisuustieteessä kuin kaunokirjallisissa teoksissakin. Väitöskirjan keskiössä ovat romaanikirjailija John Barthin, dramatisti Tom Stoppardin ja runoilija Jorie Grahamin teosten analyysit. Nämä kirjailijat ammentavat kaaosteoriasta keinoja käsitteellistää rakenteita, jotka ovat yhtä aikaa dynaamisia prosesseja ja hahmotettavia muotoja. Kaunokirjallisina teemoina nousevat esiin myös ihmisen paradoksaalisesti tunnistettava ja aina muuttuva identiteetti sekä lopullista haltuunottoa pakeneva, mutta silti kiehtova ja tavoiteltava todellisuus. Näiden kirjailijoiden teosten analyysin sekä teoreettisen keskustelun kautta väitöskirjassa tuodaan esiin aiemmassa tutkimuksessa varjoon jäänyt, koherenssia, ymmärrettävyyttä ja realismia painottava humanistinen näkökulma kaaosteorian merkityksestä kirjallisuudessa.
Resumo:
Evolution of crystallographic texture in the orthorhombic phase of a two-phase alloy Ti–22Al–25Nb (at%), consisting of orthorhombic (O) and bcc (β/B2) phases, was studied. The material was subjected to deformation in two-phase field as well as in the single β phase field. The resulting evolution of microstructure and crystallographic texture were recorded using scanning electron microscopy and X-ray diffraction. The orthorhombic phase underwent change in morphology (from platelets to equiaxed) on rolling in the two-phase field with the texture getting sharper with the amount of deformation. Rolling above β transus temperature led to hot deformation of single β phase microstructure and its subsequent cooling produced transformed coarse platelets of orthorhombic phase with texture in orientation relation with the high temperature deformed β phase.
Resumo:
Carol and I just missed each other in the early 1990s: Carol left Manchester for Australia in 1990, while I an·iv·ed in Manchester from Australia in 1993. Sixteen years later and on the very opposite side of the world, we found ourselves sharing an adjacent room during the 2009 Agri-Food Research Network conference in Auckland. Carol was already an accomplished sociologist; I was a newbie PhD student, presenting on a thesis topic that was only just starting to take shape...
Resumo:
Aseptic processing involves sterilising the product (most meat products being low-acid foods containing particulates) and package separately, and filling under sterile conditions. Advantages include better product quality compared with canned products, lower transport and storage costs compared with frozen products, and virtually no restriction on package size. Problems include ensuring adequate heat penetration into the particles to ensure sterility, preventing separation of particles from the carrier liquid, and retention of particle structure and shape. Particulate foods can be sterilised in scraped-surface heat exchangers. Other methods involve heating the particles separately, and combining them during filling. The effects of aseptic processing on meat product quality (colour, flavour, texture, and mutrition) are outlined in this paper.