965 resultados para SUPPRESSOR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Plant Molecular Biology, Biotechnology and Bioentrepeneurship

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES Pilocytic astrocytomas (PAs) are the most frequent astrocytomas in children and adolescents. Methilthioadenosine phosphorylase(MTAP) is a tumor-suppressor gene, the loss of expression of which is associated with a poor prognosis and better response to specific chemotherapy in leukemia and non-small-cell lung cancer. The expression of MTAP in brain tumors remains largely unknown and its biological role in PA is still unexplored. Our aims were to describe the immunohistochemical MTAP expression in a series of PAs and relate it to the clinicopathological features of the patients. METHODS We assessed MTAP expression on immunohistochemistry in 69 pediatric and adult patients with PA in a tissue microarray platform. RESULTS Retained expression of MTAP was seen in >85% of the tumors compared to in the nonneoplastic adjacent tissue. Only 3 supratentorial tumors showed a complete loss of MTAP expression. No significant association with clinicopathological features or overall survival of the patients was found. CONCLUSIONS MTAP expression is retained in PAs and is not an outcome predictor for these tumors. Nevertheless, a subset of patients with PAs exhibiting a loss of MTAP could potentially benefit from treatment with specific chemotherapy, especially when lesions are recurrent or surgical resection is not recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica Aplicada – Biomedicina

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thymulin is a pharmacologically active metallononapeptide inducing the differentiation of T cells and enhancing several functions of the various T cell subsets in normal or partially thymus-deficient recipients. Its effect on suppressor T cells is, so far, the most remarkable and should be the first to find useful clinical applications. The peptide is a natural hormone, available in synthetic form. It is not toxic and one may foresee its clinical use as one of the major immunoregulatory agents in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the existence of erythrocyte-autoreactive B cells in normal animals, erythrocyte-autoantibodies could not be detected during polyclonal B-cell activation (PBA) both in patients with visceral leishmaniasis and in bacterial lipopolysacharide (LPS) - injected mice. The failure to detect these autoantibodies in mice with PBA di not seem to be due to suppressor-cell activity, since (1) transfer of spleen cells from LPS-treated mice to naive recipients did not affect the erythrocyte-autoantibody response elicited by subsequent injections of rat erythrocytes and (2) low doses of X-radiation did no lead to erythrocyte-autoantibody detection in LPS-treated mice. The possibility that the detection of erytrocyte-autoantibodies could be affected by autoantibodies with idiotopes mimicring erythrocyte epitopes, the synthesis of which would also be triggerred in PBA, is discussed. Indirect evidence for the existence in normal animal of an expanded lymphocyte population with DNP-binding. Ia-mimicring antigen receptors is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed an in vitro model of granuloma formation for the purpose of studying the immunological components of delayed type hypersensitivity granuloma formation in patients infected with Schistosoma mansoni. Our data show that 1) granulomatous hypersensitivity can be studied by examining the cellular reactivity manifested as multiple cell layers surrounding the antigen conjugated beads; 2) this reactivity is a CD4 cell dependent, macrophage dependent, B cell independent response and 3) the in vitro granuloma response is antigenically specific for parasite egg antigens. Studies designed to investigate the immune regulation of granulomatous hypersensitivity using purified populations of either CD4 or CD8 T cells have demonstrated the complexity of cellular interactions in the suppression of granulomatous hypersensitivity. The anti-S. mansoni egg immune responses of individual patients with chronic intestinal schistosomiasis can be classified either as soluble egg antigen (SEA) hypersensitive with maximal granulomatous hypersensitivity or SEA suppressive with activation of the T cell suppressor pathway with effective SEA granuloma modulation. Our data suggest that T cell network interactions are active in the generation of effective granuloma modulation in chronic intestinal schistosomiasis patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunoloical profile of acquired immunodeficiency syndrome (AIDS) and chronic lymphadenopathy syndrome (CLAS) in 15 and 11 Brazilian patients, respectively, was studied. The AIDS patients showed reduced percentage of total T (CD3) and T-helper-inducer (CD4) lymphocytes, relative increase in numbers of T-suppressor-cytotoxic (CD8) cells and a marked inversion of T-helper-inducer/suppressor-cytotoxic (CD4/CD8) ratio. Lymphoproliferative responses to PHA, ConA, PPD and PWM were diminished. Hypergamaglobulinemia and high levels of circulating immune complexes were also found. The CLAS patients also showed important immunological alterations, but not so intense as those with AIDS. These data seems to be similar to those observed in other parts of the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Splenic marginal zone lymphoma (SMZL) is a low grade B-cell non-Hodgkin's lymphoma. The molecular pathology of this entity remains poorly understood. To characterise this lymphoma at the molecular level, we performed an integrated analysis of 1) genome wide genetic copy number alterations 2) gene expression profiles and 3) epigenetic DNA methylation profiles.We have previously shown that SMZL is characterised by recurrent alterations of chromosomes 7q, 6q, 3q, 9q and 18; however, gene resolution oligonucleotide array comparative genomic hybridisation did not reveal evidence of cryptic amplification or deletion in these regions. The most frequently lost 7q32 region contains a cluster of miRNAs. qRT-PCR revealed that three of these (miR-182/96/183) show underexpression in SMZL, and miR-182 is somatically mutated in >20% of cases of SMZL, as well as in >20% of cases of follicular lymphoma, and between 5-15% of cases of chronic lymphocytic leukaemia, MALT-lymphoma and hairy cell leukaemia. We conclude that miR-182 is a strong candidate novel tumour suppressor miRNA in lymphoma.The overall gene expression signature of SMZL was found to be strongly distinct fromthose of other lymphomas. Functional analysis of gene expression data revealed SMZL to be characterised by abnormalities in B-cell receptor signalling (especially through the CD19/21-PI3K/AKT pathway) and apoptotic pathways. In addition, genes involved in the response to viral infection appeared upregulated. SMZL shows a unique epigenetic profile, but analysis of differentially methylated genes showed few with methylation related transcriptional deregulation, suggesting that DNA methylation abnormalities are not a critical component of the SMZL malignant phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'ubiquitination est une modification des protéines conservée, consistant en l'addition de résidus « ubiquitine » et régulant le destin cellulaire des protéines. La protéine « TRAF-interacting protein » TRAIP (ou TRIP) est une ligase E3 qui catalyse l'étape finale de l'ubiquitination. TRAIP est conservé dans l'évolution et est nécessaire au développement des organismes puisque l'ablation de TRAIP conduit à la mort embryonnaire aussi bien de la drosophile que de la souris. De plus, la réduction de l'expression de TRAIP dans des kératinocytes épidermiques humains réprime la prolifération cellulaire et induit un arrêt du cycle cellulaire en phase Gl, soulignant le lien étroit entre TRAIP et la prolifération cellulaire. Comme les mécanismes de régulation de la prolifération jouent un rôle majeur dans l'homéostasie de la peau, il est important de caractériser la fonction de TRAIP dans ces mécanismes. En utilisant des approches in vitro, nous avons déterminé que la protéine TRAIP est instable, modifiée par l'addition d'ubiquitine et ayant une demi-vie d'environ 4 heures. Nos analyses ont également révélé que l'expression de TRAIP est dépendante du cycle cellulaire, atteignant un pic d'expression en phase G2/M et que l'induction de son expression s'effectue principalement au cours de la transition Gl/S. Nous avons identifié le facteur de transcription E2F1 comme en étant le responsable, en régulant directement le promoteur de TRAIP. Aussi, TRAIP endogène ou surexprimée est surtout localisée au niveau du nucléole, une organelle nucléaire qui est désassemblée pendant la division cellulaire. Pour examiner la localisation subcellulaire de TRAIP pendant la mitose, nous avons imagé la protéine TRAIP fusionnée à une protéine fluorescente, à l'intérieur de cellules vivantes nommées HeLa, à l'aide d'un microscope confocal. Dans ces conditions, TRAIP est majoritairement localisée autour des chromosomes en début de mitose, puis est arrangée au niveau de l'ADN chromosomique en fin de mitose. La détection de TRAIP endogène à l'aide d'un anticorps spécifique a confirmé cette localisation. Enfin, l'inactivation de TRAIP dans les cellules HeLa par interférence ARN a inhibé leur capacité à s'arrêter en milieu de mitose. Nos résultats suggèrent que le mécanisme sous-jacent peut être lié au point de contrôle de l'assemblage du fuseau mitotique. - Ubiquitination of proteins is a post-translational modification which decides the cellular fate of the protein. The TRAF-interacting protein (TRAIP, TRIP) functions as an E3 ubiquitin ligase mediating addition of ubiquitin moieties to proteins. TRAIP interacts with the deubiquitinase CYLD, a tumor suppressor whose functional inactivation leads to skin appendage tumors. TRAIP is required for early embryonic development since removal of TRAIP either in Drosophila or mice by mutations or knock¬out is lethal due to aberrant regulation of cell proliferation and apoptosis. Furthermore, shRNA- mediated knock-down of TRAIP in human epidermal keratinocytes (HEK) repressed cell proliferation and induced a Gl/S phase block in the cell cycle. Additionally, TRAIP expression is strongly down- regulated during keratinocyte differentiation supporting the notion of a tight link between TRAIP and cell proliferation. We thus examined the biological functions of TRAIP in epithelial cell proliferation. Using an in vitro approach, we could determine that the TRAIP protein is unstable, modified by addition of ubiquitin moieties after translation and exhibits a half-life of 3.7+/-1-6 hours. Our analysis revealed that the TRAIP expression is modulated in a cell-cycle dependent manner, reaching a maximum expression level in G2/M phases. In addition, the expression of TRAIP was particularly activated during Gl/S phase transition and we could identify the transcription factor E2F1 as an activator of the TRAIP gene promoter. Both endogenous and over-expressed TRAIP mainly localized to the nucleolus, a nuclear organelle which is disassembled during cell division. To examine the subcellular localization of TRAIP during M phase, we performed confocal live-cell imaging of a functional fluorescent protein TRAIP-GFP in HeLa cells. TRAIP was distributed in the cytoplasm and accumulated around mitotic chromosomes in pro- and meta-phasic cells. TRAIP was then confined to chromosomal DNA location in anaphase and later phases of mitosis. Immune-detection of endogenous TRAIP protein confirmed its particular localization in mitosis. Finally, inactivating TRAIP expression in HeLa cells using RNA interference abrogated the cells ability to stop or delay mitosis progression. Our results suggested that TRAIP may involve the spindle assembly checkpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigated promoter hypermethylation of TP53 regulatory pathways providing a potential link between epigenetic changes and mitochondrial DNA (mtDNA) alterations in breast cancer patients lacking a TP53 mutation. The possibility of using the cancer-specific alterations in serum samples as a blood-based test was also explored. Triple-matched samples (cancerous tissues, matched adjacent normal tissues and serum samples) from breast cancer patients were screened for TP53 mutations, and the promoter methylation profile of P14(ARF), MDM2, TP53 and PTEN genes was analyzed as well as mtDNA alterations, including D-loop mutations and mtDNA content. In the studied cohort, no mutation was found in TP53 (DNA-binding domain). Comparison of P14(ARF) and PTEN methylation patterns showed significant hypermethylation levels in tumor tissues (P < 0.05 and <0.01, respectively) whereas the TP53 tumor suppressor gene was not hypermethylated (P < 0.511). The proportion of PTEN methylation was significantly higher in serum than in the normal tissues and it has a significant correlation to tumor tissues (P < 0.05). mtDNA analysis revealed 36.36% somatic and 90.91% germline mutations in the D-loop region and also significant mtDNA depletion in tumor tissues (P < 0.01). In addition, the mtDNA content in matched serum was significantly lower than in the normal tissues (P < 0.05). These data can provide an insight into the management of a therapeutic approach based on the reversal of epigenetic silencing of the crucial genes involved in regulatory pathways of the tumor suppressor TP53. Additionally, release of significant aberrant methylated PTEN in matched serum samples might represent a promising biomarker for breast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El limfoma de cèl•lules de mantell (LCM) és un limfoma de cèl•lules B incurable que presenta sobreexpressió de ciclina D1. Això fa necessari el desenvolupament de noves teràpies. Els gens supressors de tumors estan alterats en càncer pel silenciament epigenètic aberrant, com a conseqüència de la desacetilació de les histones dels seus promotors. Els inhibidors de les desacetilases d'histones (HDACi) són nous compostos amb resultats prometedors per al tractament de tumors. L'objectiu principal, i que ha durat 7 mesos, va ser analitzar l'activitat antitumoral de l'àcid hidroxàmic suberoilanílid (SAHA, vorinostat), un HDACi en fase d'assajos clínics per al tractament de varis tumors, en cèl•lules de LCM. Es va analitzar la sensibilitat al SAHA (Merck Pharmaceuticals) en nou línies cel•lulars humanes de LCM, que es diferenciaven en les alteracions genètiques, les característiques replicatives i la sensibilitat als fàrmacs; i cèl•lules primàries de 6 pacients. El SAHA va presentar un efecte citotòxic heterogeni amb DL50 (Dosi Letal 50) de 3.25 μM a &25 μM amb 24 d'incubació. Aquest efecte citotòxic s'incrementava notablement després de 48 hores d'incubació assolint una DL50 de 0.34 a 5.69 μM. Cal destacar que 5 dels 6 casos de les mostres primàries de LCM van mostrar una elevada sensibilitat (DL50 & 8.07 μM). A nivell mecanistic, el SAHA va augmentar l'acetilació de les histones H3 i H4, i va disminuir els nivells de proteïna de la ciclina D1 i c-Flip. La citometria de flux i els anàlisis per Western Blot van posar de manifest que l'efecte citotòxic del SAHA es dóna a través de l'activació de la via mitocondrial de mort cel•lular i la cascada de caspases. El SAHA indueix l'expressió transcripcional de la proteïna proapoptòtica Bmf. Aquests resultats suggereixen que el SAHA podria ser una nova teràpia prometedora per al tractament del LCM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy or "self eating" is frequently activated in tumor cells treated with chemotherapy or irradiation. Whether autophagy represents a survival mechanism or rather contributes to cell death remains controversial. To address this issue, the role of autophagy in radiosensitive and radioresistant human cancer cell lines in response to gamma-irradiation was examined. We found irradiation-induced accumulation of autophagosomes accompanied by strong mRNA induction of the autophagy-related genes beclin 1, atg3, atg4b, atg4c, atg5, and atg12 in each cell line. Transduction of specific target-siRNAs led to down-regulation of these genes for up to 8 days as shown by reverse transcription-PCR and Western blot analysis. Blockade of each autophagy-related gene was associated with strongly diminished accumulation of autophagosomes after irradiation. As shown by clonogenic survival, the majority of inhibited autophagy-related genes, each alone or combined, resulted in sensitization of resistant carcinoma cells to radiation, whereas untreated resistant cells but not sensitive cells survived better when autophagy was inhibited. Similarly, radiosensitization or the opposite was observed in different sensitive carcinoma cells and upon inhibition of different autophagy genes. Mutant p53 had no effect on accumulation of autophagosomes but slightly increased clonogenic survival, as expected, because mutated p53 protects cells by conferring resistance to apoptosis. In our system, short-time inhibition of autophagy along with radiotherapy lead to enhanced cytotoxicity of radiotherapy in resistant cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DCs) are professional APCs that have a role in the initiation of adaptive immune responses and tolerance. Among the tolerogenic mechanisms, the expression of the enzyme IDO1 represents an effective tool to generate T regulatory cells. In humans, different DC subsets express IDO1, but less is known about the IDO1-related enzyme IDO2. In this study, we found a different pattern of expression and regulation between IDO1 and IDO2 in human circulating DCs. At the protein level, IDO1 is expressed only in circulating myeloid DCs (mDCs) and is modulated by PGE2, whereas IDO2 is expressed in both mDCs and plasmacytoid DCs and is not modulated by PGE2. In healthy subjects, IDO1 expression requires the presence of PGE2 and needs continuous transcription and translation, whereas IDO2 expression is constitutive, independent from suppressor of cytokine signaling 3 activity. Conversely, in patients suffering from inflammatory arthritis, circulating DCs express both IDO1 and IDO2. At the functional level, both mDCs and plasmacytoid DCs generate T regulatory cells through an IDO1/IDO2-dependent mechanism. We conclude that, in humans, whereas IDO1 provides an additional mechanism of tolerance induced by proinflammatory mediators, IDO2 is stably expressed in steady-state conditions and may contribute to the homeostatic tolerogenic capacity of DCs.