819 resultados para Recurrent Neural Network
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
Resumo:
The estimation of pavement layer moduli through the use of an artificial neural network is a new concept which provides a less strenuous strategy for backcalculation procedures. Artificial Neural Networks are biologically inspired models of the human nervous system. They are specifically designed to carry out a mapping characteristic. This study demonstrates how an artificial neural network uses non-destructive pavement test data in determining flexible pavement layer moduli. The input parameters include plate loadings, corresponding sensor deflections, temperature of pavement surface, pavement layer thicknesses and independently deduced pavement layer moduli.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.
Resumo:
Acknowledgement SN and SS gratefully acknowledge the financial support from Lloyd’s Register Foundation Centre during this work.
Resumo:
We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.
Resumo:
A novel artificial neural network (ANN)-based nonlinear equalizer (NLE) of low complexity is demonstrated for 40-Gb/s CO-OFDM at 2000 km, revealing ∼1.5 dB enhancement in Q-factor compared to inverse Volterra-series transfer function based NLE.
Resumo:
Oscillating Water Column (OWC) is one type of promising wave energy devices due to its obvious advantage over many other wave energy converters: no moving component in sea water. Two types of OWCs (bottom-fixed and floating) have been widely investigated, and the bottom-fixed OWCs have been very successful in several practical applications. Recently, the proposal of massive wave energy production and the availability of wave energy have pushed OWC applications from near-shore to deeper water regions where floating OWCs are a better choice. For an OWC under sea waves, the air flow driving air turbine to generate electricity is a random process. In such a working condition, single design/operation point is nonexistent. To improve energy extraction, and to optimise the performance of the device, a system capable of controlling the air turbine rotation speed is desirable. To achieve that, this paper presents a short-term prediction of the random, process by an artificial neural network (ANN), which can provide near-future information for the control system. In this research, ANN is explored and tuned for a better prediction of the airflow (as well as the device motions for a wide application). It is found that, by carefully constructing ANN platform and optimizing the relevant parameters, ANN is capable of predicting the random process a few steps ahead of the real, time with a good accuracy. More importantly, the tuned ANN works for a large range of different types of random, process.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
In order to predict compressive strength of geopolymers prepared from alumina-silica natural products, based on the effect of Al 2 O 3 /SiO 2, Na 2 O/Al 2 O 3, Na 2 O/H 2 O, and Na/[Na+K], more than 50 pieces of data were gathered from the literature. The data was utilized to train and test a multilayer artificial neural network (ANN). Therefore a multilayer feedforward network was designed with chemical compositions of alumina silicate and alkali activators as inputs and compressive strength as output. In this study, a feedforward network with various numbers of hidden layers and neurons were tested to select the optimum network architecture. The developed three-layer neural network simulator model used the feedforward back propagation architecture, demonstrated its ability in training the given input/output patterns. The cross-validation data was used to show the validity and high prediction accuracy of the network. This leads to the optimum chemical composition and the best paste can be made from activated alumina-silica natural products using alkaline hydroxide, and alkaline silicate. The research results are in agreement with mechanism of geopolymerization.
Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000829
Resumo:
This paper presents flow regimes identification methodology in multiphase system in annular, stratified and homogeneous oil-water-gas regimes. The principle is based on recognition of the pulse height distributions (PHD) from gamma-ray with supervised artificial neural network (ANN) systems. The detection geometry simulation comprises of two NaI(Tl) detectors and a dual-energy gamma-ray source. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be explored. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to acquire information about the different flow regimes. The PHDs obtained by the detectors were used as input to ANN. The data sets required for training and testing the ANN were generated by the MCNP-X code from static and ideal theoretical models of multiphase systems. The ANN correctly identified the three different flow regimes for all data set evaluated. The results presented show that PHDs examined by ANN may be applied in the successfully flow regime identification.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.