957 resultados para Radio circuits
Resumo:
This paper describes the use of radio over multimode fibre networks to allow wideband wireless coverage in building environments. It will cover basic principles, commercial applications of such networks and their extension to provide a converged communications/sensing system. © 2009 Optical Society of America.
Resumo:
Transmission properties of data amplitude modulation (AM) and frequency modulation (FM) in radio-over-fiber (RoF) system are studied numerically. The influences of fiber dispersion and nonlinearity on different microwave modulation schemes, including double side band (DSB), single side band (SSB) and optical carrier suppression (OCS), are investigated and compared. The power penalties at the base station (BS) and the eye opening penalties of the recovered data at the end users are both calculated and analyzed. Numerical simulation results reveal that the power penalty of FM can be drastically decreased due to the larger modulation depth it can achieve than that of AM. The local spectrum broadening around subcarrier microwave frequency of AM due to fiber nonlinearity can also be eliminated with FM. It is demonstrated for the first time that the eye openings of the FM recovered data can be controlled by its modulation depths and the coding formats. Negative voltage encoding format was used to further decrease the RF frequency thus increase the fluctuation period considering their inverse relationship.
Resumo:
For realization of hexagonal BDD-based digital systems, active and sequential circuits including inverters, flip flops and ring oscillators are designed and fabricated on GaAs-based hexagonal nanowire networks controlled by Schottky wrap gates (WPGs), and their operations are characterized. Fabricated inverters show comparatively high transfer gain of more than 10. Clear and correct operation of hexagonal set-reset flip flops (SR-FFs) is obtained at room temperature. Fabricated hexagonal D-type flip flop (D-FF) circuits integrating twelve WPG field effect transistors (FETs) show capturing input signal by triggering although the output swing is small. Oscillatory output is successfully obtained in a fabricated 7-stage hexagonal ring oscillator. Obtained results confirm that a good possibility to realize practical digital systems can be implemented by the present circuit approach.
Resumo:
Polycrystalline 3C-SiC films are deposited on SiO2 coated Si substrates by low pressure chemical vapour deposition (LPCVD) with C3H8 and SiH4 as precursors. Controlled nitrogen doping is performed by adding NH3 during SiC growth to obtain the low resistivity 3C-SiC films. X-ray diffraction (XRD) patterns indicate that the deposited films are highly textured (111) orientation. The surface morphology and roughness are determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface features are spherulitic texture with average grain size of 100 nm, and the rms roughness is 20nm (AFM 5 x 5 mu m images). Polycrystalline 3C-SiC films with highly orientational texture and good surface morphology deposited on SiO2 coated Si substrates could be used to fabricate rf microelectromechanical systems (MEMS) devices such as SiC based filters.
Resumo:
Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.
Resumo:
The characteristics of whispering-gallery-like modes in the equilateral triangle and square microresonators are introduced, including directional emission triangle and square microlasers connected to an output waveguide. We propose a photonic interconnect scheme by connecting two directional emission microlasers with an optical waveguide on silicon integrated circuit chip. The measurement indicates that the triangle microlasers can work as a resonance enhanced photodetector for optical interconnect.
Resumo:
This paper presents a novel efficient charge pump composed of low Vth metal-oxide-semiconductor (MOS) field effect transistors (FET) in the course of realizing radio frequency (RF) energy AC/DC conversion. The novel structure eliminates those defects caused by typical Schottky-diode charge pumps, which are dependent on specific processes and inconsistent in quality between different product batches. Our analyses indicate that an easy-fabricated, stable and efficient RF energy AC/DC charge pump can be conveniently implemented through reasonably configuring the MOS transistor aspect ratio, and other design parameters such as capacitance, multiplying stages to meet various demands on performance.
Resumo:
An electroabsorption modulator using an intra-step quantum well (IQW) active region is fabricated for a radio over fibre system. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio efficiency (10 dB V-1) and low capacitance (< 0.42 pF), with which high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to an excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for a multi-quantum well EAM without a heat sink.
Resumo:
Sb-doped Zn1-xMgxO films were grown on c-plane sapphire substrates by radio-frequency magnetron sputtering. The p-type conduction of the films (0.05 <= x <= 0.13) was confirmed by Hall measurements, revealing a hole concentration of 10(15)-10(16) cm(-3) and a mobility of 0.6-4.5 cm(2)/V s. A p-n homojunction comprising an undoped ZnO layer and an Sb-doped Zn0.95Mg0.05O layer shows a typical rectifying characteristic. Sb-doped p-type Zn1-xMgxO films also exhibit a changeable wider band gap as a function of x, implying that they can probably be used for fabrication of ZnO-based quantum wells and ultraviolet optoelectronic devices. (c) 2006 American Institute of Physics.
Resumo:
An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide. In the cavity, laser resonance in the inner structure benelits from not only the anomalous dispersion characteristic of the first band-edge at the M point in the first Brillouin-zone but also zero photon states in the outer structure. A line defect waveguide is introduced in the outer structure for extracting photons from the inner cavity. Three-dimensional finite-difference time-domain simulations apparently show the in-plane laser output from the waveguide. The microcavity has an effective mode volume of about 3.2(lambda/eta(slab))(3) for oscillation -mode and the quality factor of the device including line defect waveguide is estimated to be as high as 1300.
Resumo:
High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 mu m to 1.5 mu m range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N-2 How rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54 mu m GaInNAs/GaAs QWs was kept as comparable as that in 1.31 mu m.
Resumo:
P-doped ZnO films were deposited on n-Si substrate by radio-frequency magnetron sputtering. Hall measurements revealed that the films annealed in situ at 750 degrees C in an oxygen ambient at a pressure of 1.3x10(-3)-3.9x10(-3) Pa showed p-type behavior with a hole concentration of 2.7x10(16)-2.2x10(17) cm(-3), a mobility of 4-13 cm(2)/V s, and a resistivity of 10.4-19.3 Omega cm. Films annealed at 750 degrees C in a vacuum or in oxygen ambient at higher pressures (5.2x10(-3) and 6.5x10(-3) Pa) showed n-type behavior. Additionally, the p-ZnO/n-Si heterojunction showed a diodelike I-V characteristic. Our results indicate that P-doped p-type ZnO films can be obtained by annealing in oxygen ambient at very low pressures. (c) 2006 American Institute of Physics.
Resumo:
Sb-doped and undoped ZnO thin films were deposited on Si (100) substrates by radio frequency (RF) magnetron sputtering. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that all the films had polycrystalline wurtzite structure and c-axis preferred orientation. Room temperature Hall measurements showed that the as-grown films were n-type and conducting (rho similar to 1-10 Omega cm). Annealing in a nitrogen ambient at 400 degrees C for 1 h made both samples highly resistive (rho > 10(3) Omega cm). Increasing the annealing temperature up to 800 C, the resistivity of the ttndoped ZnO film decreased gradually, but it increased for the Sb-doped ZnO film. In the end, the Sb-doped ZnO film annealed at 800 C became semi-insulating with a resistivity of 10(4)Omega cm. In addition, the effects of annealing treatment and Sb-doping on the structural and electrical properties are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Radio frequency magnetron sputtering/post-carbonized-reaction technique was adopted to prepare good-quality GaN films on Al2O3(0 0 0 1) substrates. The sputtered Ga2O3 film doped with carbon was used as the precursor for GaN growth. X-ray diffraction (XRD) pattern reveals that the film consists of hexagonal wurtzite GaN. X-ray photoelectron spectroscopy (XPS) shows that no oxygen can be detected. Electrical and room-temperature photoluminescence measurements show that good-quality polycrystalline GaN films were successfully grown on Al2O3(0 0 0 1) substrates. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, the guided modes of a photonic crystal polarization beam splitter (PC-PBS) are studied. We demonstrate that the transmission of a low-loss photonic crystal 120 degrees waveguide bend integrated with the PBS will be influenced if the PBS is multi-moded. We propose a single-moded PC-PBS structure by introducing deformed structures, and it shows twice the enhancement of the transmission. This device with remarkable improvement of performance is promising in the use of photonic crystal integrated circuits design.