990 resultados para Quantitative sensory test
Resumo:
In France, farmers commission about 250,000 soil-testing analyses per year to assist them managing soil fertility. The number and diversity of origin of the samples make these analyses an interesting and original information source regarding cultivated topsoil variability. Moreover, these analyses relate to several parameters strongly influenced by human activity (macronutrient contents, pH...), for which existing cartographic information is not very relevant. Compiling the results of these analyses into a database makes it possible to re-use these data within both a national and temporal framework. A database compilation relating to data collected over the period 1990-2009 has been recently achieved. So far, commercial soil-testing laboratories approved by the Ministry of Agriculture have provided analytical results from more than 2,000,000 samples. After the initial quality control stage, analytical results from more than 1,900,000 samples were available in the database. The anonymity of the landholders seeking soil analyses is perfectly preserved, as the only identifying information stored is the location of the nearest administrative city to the sample site. We present in this dataset a set of statistical parameters of the spatial distributions for several agronomic soil properties. These statistical parameters are calculated for 4 different nested spatial entities (administrative areas: e.g. regions, departments, counties and agricultural areas) and for 4 time periods (1990-1994, 1995-1999, 2000-2004, 2005-2009). Two kinds of agronomic soil properties are available: the firs one correspond to the quantitative variables like the organic carbon content and the second one corresponds to the qualitative variables like the texture class. For each spatial unit and temporal period, we calculated the following statistics stets: the first set is calculated for the quantitative variables and corresponds to the number of samples, the mean, the standard deviation and, the 2-,4-,10-quantiles; the second set is calculated for the qualitative variables and corresponds to the number of samples, the value of the dominant class, the number of samples of the dominant class, the second dominant class, the number of samples of the second dominant class.
Resumo:
Since a pork barrel is crucial in buying off voters, competition over the distributions among legislators has been considered as one of the main factors in producing congressional political dynamism and congressional institutions. This paper aims to test the theory of pork barrel distributions in the Philippines through OLS regression on the quantitative data of the 12th congress. The results show that some attributes of legislators are statistically significant in estimating pork barrel allocations, but, do not support the hypothesis that the legislators’ proximity to leaders is a determining factor in the distributions.
Resumo:
This Doctoral Thesis entitled Contribution to the analysis, design and assessment of compact antenna test ranges at millimeter wavelengths aims to deepen the knowledge of a particular antenna measurement system: the compact range, operating in the frequency bands of millimeter wavelengths. The thesis has been developed at Radiation Group (GR), an antenna laboratory which belongs to the Signals, Systems and Radiocommunications department (SSR), from Technical University of Madrid (UPM). The Radiation Group owns an extensive experience on antenna measurements, running at present four facilities which operate in different configurations: Gregorian compact antenna test range, spherical near field, planar near field and semianechoic arch system. The research work performed in line with this thesis contributes the knowledge of the first measurement configuration at higher frequencies, beyond the microwaves region where Radiation Group features customer-level performance. To reach this high level purpose, a set of scientific tasks were sequentially carried out. Those are succinctly described in the subsequent paragraphs. A first step dealed with the State of Art review. The study of scientific literature dealed with the analysis of measurement practices in compact antenna test ranges in addition with the particularities of millimeter wavelength technologies. Joint study of both fields of knowledge converged, when this measurement facilities are of interest, in a series of technological challenges which become serious bottlenecks at different stages: analysis, design and assessment. Thirdly after the overview study, focus was set on Electromagnetic analysis algorithms. These formulations allow to approach certain electromagnetic features of interest, such as field distribution phase or stray signal analysis of particular structures when they interact with electromagnetic waves sources. Properly operated, a CATR facility features electromagnetic waves collimation optics which are large, in terms of wavelengths. Accordingly, the electromagnetic analysis tasks introduce an extense number of mathematic unknowns which grow with frequency, following different polynomic order laws depending on the used algorithmia. In particular, the optics configuration which was of our interest consisted on the reflection type serrated edge collimator. The analysis of these devices requires a flexible handling of almost arbitrary scattering geometries, becoming this flexibility the nucleus of the algorithmia’s ability to perform the subsequent design tasks. This thesis’ contribution to this field of knowledge consisted on reaching a formulation which was powerful at the same time when dealing with various analysis geometries and computationally speaking. Two algorithmia were developed. While based on the same principle of hybridization, they reached different order Physics performance at the cost of the computational efficiency. Inter-comparison of their CATR design capabilities was performed, reaching both qualitative as well as quantitative conclusions on their scope. In third place, interest was shifted from analysis - design tasks towards range assessment. Millimetre wavelengths imply strict mechanical tolerances and fine setup adjustment. In addition, the large number of unknowns issue already faced in the analysis stage appears as well in the on chamber field probing stage. Natural decrease of dynamic range available by semiconductor millimeter waves sources requires in addition larger integration times at each probing point. These peculiarities increase exponentially the difficulty of performing assessment processes in CATR facilities beyond microwaves. The bottleneck becomes so tight that it compromises the range characterization beyond a certain limit frequency which typically lies on the lowest segment of millimeter wavelength frequencies. However the value of range assessment moves, on the contrary, towards the highest segment. This thesis contributes this technological scenario developing quiet zone probing techniques which achieves substantial data reduction ratii. Collaterally, it increases the robustness of the results to noise, which is a virtual rise of the setup’s available dynamic range. In fourth place, the environmental sensitivity of millimeter wavelengths issue was approached. It is well known the drifts of electromagnetic experiments due to the dependance of the re sults with respect to the surrounding environment. This feature relegates many industrial practices of microwave frequencies to the experimental stage, at millimeter wavelengths. In particular, evolution of the atmosphere within acceptable conditioning bounds redounds in drift phenomena which completely mask the experimental results. The contribution of this thesis on this aspect consists on modeling electrically the indoor atmosphere existing in a CATR, as a function of environmental variables which affect the range’s performance. A simple model was developed, being able to handle high level phenomena, such as feed - probe phase drift as a function of low level magnitudes easy to be sampled: relative humidity and temperature. With this model, environmental compensation can be performed and chamber conditioning is automatically extended towards higher frequencies. Therefore, the purpose of this thesis is to go further into the knowledge of millimetre wavelengths involving compact antenna test ranges. This knowledge is dosified through the sequential stages of a CATR conception, form early low level electromagnetic analysis towards the assessment of an operative facility, stages for each one of which nowadays bottleneck phenomena exist and seriously compromise the antenna measurement practices at millimeter wavelengths.
Resumo:
Quantitative descriptive analysis (QDA) is used to describe the nature and the intensity of sensory properties from a single evaluation of a product, whereas temporal dominance of sensation (TDS) is primarily used to identify dominant sensory properties over time. Previous studies with TDS have focused on model systems, but this is the first study to use a sequential approach, i.e. QDA then TDS in measuring sensory properties of a commercial product category, using the same set of trained assessors (n = 11). The main objectives of this study were to: (1) investigate the benefits of using a sequential approach of QDA and TDS and (2) to explore the impact of the sample composition on taste and flavour perceptions in blackcurrant squashes. The present study has proposed an alternative way of determining the choice of attributes for TDS measurement based on data obtained from previous QDA studies, where available. Both methods indicated that the flavour profile was primarily influenced by the level of dilution and complexity of sample composition combined with blackcurrant juice content. In addition, artificial sweeteners were found to modify the quality of sweetness and could also contribute to bitter notes. Using QDA and TDS in tandem was shown to be more beneficial than each just on its own enabling a more complete sensory profile of the products.
Resumo:
A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three experiments at three different temperatures are necessary in order to obtain the acceleration factor which relates the time at the stress level with the time at nominal working conditions. . However, up to now only the test at the highest temperature has finished. Therefore, we can not provide complete reliability information but we have analyzed the life data and the failure mode of the solar cells inside the climatic chamber at the highest temperature. The failures have been all of them catastrophic. In fact, the solar cells have turned into short circuits. We have fitted the failure distribution to a two parameters Weibull function. The failures are wear-out type. We have observed that the busbar and the surrounding fingers are completely deteriorate
Resumo:
Quantitative measures of human movement quality are important for discriminating healthy and pathological conditions and for expressing the outcomes and clinically important changes in subjects' functional state. However the most frequently used instruments for the upper extremity functional assessment are clinical scales, that previously have been standardized and validated, but have a high subjective component depending on the observer who scores the test. But they are not enough to assess motor strategies used during movements, and their use in combination with other more objective measures is necessary. The objective of the present review is to provide an overview on objective metrics found in literature with the aim of quantifying the upper extremity performance during functional tasks, regardless of the equipment or system used for registering kinematic data.
Resumo:
The effect of the addition of a commercial enriched glutathione inactive dry yeast oenological preparation in the volatile and sensory properties of industrially manufactured rosé Grenache wines was evaluated during their shelf-life. In addition, triangle tests were performed at different times during wine aging (among 1 and 9 months) to determine the sensory differences between wines with and without glutathione inactive dry yeast preparations. Descriptive sensory analysis with a trained panel was carried out when sensory differences in the triangle test were noticed. In addition, consumer tests were performed in order to investigate consumers’ acceptability of wines. Results revealed significant sensory differences between control and glutathione inactive dry yeast wines after 9 months of aging. At that time, glutathione inactive dry yeast wines were more intense in fruity aromas (strawberry, banana) and less intense in yeast notes than control wine. The impact of the glutathione inactive dry yeast in the aroma might be the consequence of different effects that these preparations could induce in wine composition: modification of yeast byproducts during fermentation, release of volatile compounds from inactive dry yeast, interaction of wine volatile compounds with yeast macromolecules from inactive dry yeast and a possible antioxidant effect of the glutathione released by the inactive dry yeast preparation on some specific volatile compounds.
Resumo:
Dendritic cells (DCs) instruct and activate a naive immune system to mount a response toward foreign proteins. Therefore, it has been hypothesized that an ideal vaccine strategy would be to directly introduce genes encoding antigens into DCs. To test this strategy quantitatively, we have compared the immune response elicited by a genetically transfected DC line to that induced by a fibroblast line, or standard genetic immunization. We observe that a single injection of 500–1,000 transfected DCs can produce a response comparable to that of standard genetic immunization, whereas fibroblasts, with up to 50-fold greater transfection efficiency, were less potent. We conclude that transfection of a small number of DCs is sufficient to initiate a wide variety of immune responses. These results indicate that targeting genes to DCs will be important for controlling and augmenting the immunological outcome in genetic immunization.
Resumo:
Estrogen has been implicated in brain functions related to affective state, including hormone-related affective disorders in women. Although some reports suggest that estrogen appears to decrease vulnerability to affective disorders in certain cases, the mechanisms involved are unknown. We used the forced swim test (FST), a paradigm used to test the efficacy of antidepressants, and addressed the hypotheses that estrogen alters behavior of ovariectomized rats in the FST and the FST-induced expression of c-fos, a marker for neuronal activity, in the rat forebrain. The behaviors displayed included struggling, swimming, and immobility. One hour after the beginning of the test on day 2, the animals were perfused, and the brains were processed for c-fos immunocytochemistry. On day 1, the estradiol benzoate-treated animals spent significantly less time struggling and virtually no time in immobility and spent most of the time swimming. Control rats spent significantly more time struggling or being immobile during a comparable period. On day 2, similar behavioral patterns with still more pronounced differences were observed between estradiol benzoate and ovariectomized control groups in struggling, immobility, and swimming. Analysis of the mean number of c-fos immunoreactive cell nuclei showed a significant reduction in the estradiol benzoate versus control groups in areas of the forebrain relating to sensory, contextual, and integrative processing. Our results suggest that estrogen-induced neurochemical changes in forebrain neurons may translate into an altered behavioral output in the affective domain.
Resumo:
We report a general method for screening, in solution, the impact of deviations from canonical Watson-Crick composition on the thermodynamic stability of nucleic acid duplexes. We demonstrate how fluorescence resonance energy transfer (FRET) can be used to detect directly free energy differences between an initially formed “reference” duplex (usually a Watson-Crick duplex) and a related “test” duplex containing a lesion/alteration of interest (e.g., a mismatch, a modified, a deleted, or a bulged base, etc.). In one application, one titrates into a solution containing a fluorescently labeled, FRET-active, reference duplex, an unlabeled, single-stranded nucleic acid (test strand), which may or may not compete successfully to form a new duplex. When a new duplex forms by strand displacement, it will not exhibit FRET. The resultant titration curve (normalized fluorescence intensity vs. logarithm of test strand concentration) yields a value for the difference in stability (free energy) between the newly formed, test strand-containing duplex and the initial reference duplex. The use of competitive equilibria in this assay allows the measurement of equilibrium association constants that far exceed the magnitudes accessible by conventional titrimetric techniques. Additionally, because of the sensitivity of fluorescence, the method requires several orders of magnitude less material than most other solution methods. We discuss the advantages of this method for detecting and characterizing any modification that alters duplex stability, including, but not limited to, mutagenic lesions. We underscore the wide range of accessible free energy values that can be defined by this method, the applicability of the method in probing for a myriad of nucleic acid variations, such as single nucleotide polymorphisms, and the potential of the method for high throughput screening.
Resumo:
A fundamental question in human memory is how the brain represents sensory-specific information during the process of retrieval. One hypothesis is that regions of sensory cortex are reactivated during retrieval of sensory-specific information (1). Here we report findings from a study in which subjects learned a set of picture and sound items and were then given a recall test during which they vividly remembered the items while imaged by using event-related functional MRI. Regions of visual and auditory cortex were activated differentially during retrieval of pictures and sounds, respectively. Furthermore, the regions activated during the recall test comprised a subset of those activated during a separate perception task in which subjects actually viewed pictures and heard sounds. Regions activated during the recall test were found to be represented more in late than in early visual and auditory cortex. Therefore, results indicate that retrieval of vivid visual and auditory information can be associated with a reactivation of some of the same sensory regions that were activated during perception of those items.
Resumo:
Independent transgene insertions differ in expression based on their location in the genome; these position effects are of interest because they reflect the influence of genome organization on gene regulation. Position effects also represent potentially insurmountable obstacles to the rigorous functional comparison of homologous genes from different species because (i) quantitative variation in expression of each gene across genomic positions (generalized position effects, or GPEs) may overwhelm differences between the genes of interest, or (ii) divergent genes may be differentially sensitive to position effects, reflecting unique interactions between each gene and its genomic milieu (lineage-specific position effects, or LSPEs). We have investigated both types of position-effect variation by applying our method of transgene coplacement, which allows comparisons of transgenes in the same position in the genome of Drosophila melanogaster. Here we report an experimental test for LSPE in Drosophila. The alcohol dehydrogenase (Adh) genes of D. melanogaster and Drosophila affinidisjuncta differ in both tissue distribution and amounts of ADH activity. Despite this striking regulatory divergence, we found a very high correlation in overall ADH activity between the genes of the two species when placed in the same genomic position as assayed in otherwise Adh-null adults and larvae. These results argue against the influence of LSPE for these sequences, although the effects of GPE are significant. Our new findings validate the coplacement approach and show that it greatly magnifies the power to detect differences in expression between transgenes. Transgene coplacement thus dramatically extends the range of functional and evolutionary questions that can be addressed by transgenic technology.
Resumo:
Linkage and association analyses were performed to identify loci affecting disease susceptibility by scoring previously characterized sequence variations such as microsatellites and single nucleotide polymorphisms. Lack of markers in regions of interest, as well as difficulty in adapting various methods to high-throughput settings, often limits the effectiveness of the analyses. We have adapted the Escherichia coli mismatch detection system, employing the factors MutS, MutL and MutH, for use in PCR-based, automated, high-throughput genotyping and mutation detection of genomic DNA. Optimal sensitivity and signal-to-noise ratios were obtained in a straightforward fashion because the detection reaction proved to be principally dependent upon monovalent cation concentration and MutL concentration. Quantitative relationships of the optimal values of these parameters with length of the DNA test fragment were demonstrated, in support of the translocation model for the mechanism of action of these enzymes, rather than the molecular switch model. Thus, rapid, sequence-independent optimization was possible for each new genomic target region. Other factors potentially limiting the flexibility of mismatch scanning, such as positioning of dam recognition sites within the target fragment, have also been investigated. We developed several strategies, which can be easily adapted to automation, for limiting the analysis to intersample heteroduplexes. Thus, the principal barriers to the use of this methodology, which we have designated PCR candidate region mismatch scanning, in cost-effective, high-throughput settings have been removed.
Resumo:
In this study, we implement chronic optical imaging of intrinsic signals in rat barrel cortex and repeatedly quantify the functional representation of a single whisker over time. The success of chronic imaging for more than 1 month enabled an evaluation of the normal dynamic range of this sensory representation. In individual animals for a period of several weeks, we found that: (i) the average spatial extent of the quantified functional representation of whisker C2 is surprisingly large--1.71 mm2 (area at half-height); (ii) the location of the functional representation is consistent; and (iii) there are ongoing but nonsystematic changes in spatiotemporal characteristics such as the size, shape, and response amplitude of the functional representation. These results support a modified description of the functional organization of barrel cortex, where although a precisely located module corresponds to a specific whisker, this module is dynamic, large, and overlaps considerably with the modules of many other whiskers.
Resumo:
The utilization of symptom validity tests (SVTs) in pediatric assessment is receiving increasing empirical support. The Rey 15-Item Test (FIT) is an SVT commonly used in adult assessment, with limited research in pediatric populations. Given that FIT classification statistics across studies to date have been quite variable, Boone, Salazar, Lu, Warner-Chacon, and Razani (2002) developed a recognition trial to use with the original measure to enhance accuracy. The current study aims to assess the utility of the FIT and recognition trial in a pediatric mild traumatic brain injury (TBI) sample (N = 112; M = 14.6 years), in which a suboptimal effort base rate of 17% has been previously established (Kirkwood & Kirk, 2010). All participants were administered the FIT as part of an abbreviated neuropsychological evaluation; failure on the Medical Symptom Validity Test (MSVT) was used as the criterion for suspect effort. The traditional adult cut-off score of(99%), but poor sensitivity (6%). When the recognition trial was also utilized, a combination score of(sensitivity = 64%, specificity = 93%). Results indicate that the FIT with recognition trial may be useful in the assessment of pediatric suboptimal effort, at least among relatively high functioning children following mild TBI.