955 resultados para Quadratic, sieve, CUDA, OpenMP, SOC, Tegrak1
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
The aim of my thesis is to parallelize the Weighting Histogram Analysis Method (WHAM), which is a popular algorithm used to calculate the Free Energy of a molucular system in Molecular Dynamics simulations. WHAM works in post processing in cooperation with another algorithm called Umbrella Sampling. Umbrella Sampling has the purpose to add a biasing in the potential energy of the system in order to force the system to sample a specific region in the configurational space. Several N independent simulations are performed in order to sample all the region of interest. Subsequently, the WHAM algorithm is used to estimate the original system energy starting from the N atomic trajectories. The parallelization of WHAM has been performed through CUDA, a language that allows to work in GPUs of NVIDIA graphic cards, which have a parallel achitecture. The parallel implementation may sensibly speed up the WHAM execution compared to previous serial CPU imlementations. However, the WHAM CPU code presents some temporal criticalities to very high numbers of interactions. The algorithm has been written in C++ and executed in UNIX systems provided with NVIDIA graphic cards. The results were satisfying obtaining an increase of performances when the model was executed on graphics cards with compute capability greater. Nonetheless, the GPUs used to test the algorithm is quite old and not designated for scientific calculations. It is likely that a further performance increase will be obtained if the algorithm would be executed in clusters of GPU at high level of computational efficiency. The thesis is organized in the following way: I will first describe the mathematical formulation of Umbrella Sampling and WHAM algorithm with their apllications in the study of ionic channels and in Molecular Docking (Chapter 1); then, I will present the CUDA architectures used to implement the model (Chapter 2); and finally, the results obtained on model systems will be presented (Chapter 3).
Resumo:
In questa tesi sono stati apportati due importanti contributi nel campo degli acceleratori embedded many-core. Abbiamo implementato un runtime OpenMP ottimizzato per la gestione del tasking model per sistemi a processori strettamente accoppiati in cluster e poi interconnessi attraverso una network on chip. Ci siamo focalizzati sulla loro scalabilità e sul supporto di task di granularità fine, come è tipico nelle applicazioni embedded. Il secondo contributo di questa tesi è stata proporre una estensione del runtime di OpenMP che cerca di prevedere la manifestazione di errori dati da fenomeni di variability tramite una schedulazione efficiente del carico di lavoro.
Resumo:
Diese Arbeit widmet sich den Darstellungssätzen für symmetrische indefinite (das heißt nicht-halbbeschränkte) Sesquilinearformen und deren Anwendungen. Insbesondere betrachten wir den Fall, dass der zur Form assoziierte Operator keine Spektrallücke um Null besitzt. Desweiteren untersuchen wir die Beziehung zwischen reduzierenden Graphräumen, Lösungen von Operator-Riccati-Gleichungen und der Block-Diagonalisierung für diagonaldominante Block-Operator-Matrizen. Mit Hilfe der Darstellungssätze wird eine entsprechende Beziehung zwischen Operatoren, die zu indefiniten Formen assoziiert sind, und Form-Riccati-Gleichungen erreicht. In diesem Rahmen wird eine explizite Block-Diagonalisierung und eine Spektralzerlegung für den Stokes Operator sowie eine Darstellung für dessen Kern erreicht. Wir wenden die Darstellungssätze auf durch (grad u, h() grad v) gegebene Formen an, wobei Vorzeichen-indefinite Koeffzienten-Matrizen h() zugelassen sind. Als ein Resultat werden selbstadjungierte indefinite Differentialoperatoren div h() grad mit homogenen Dirichlet oder Neumann Randbedingungen konstruiert. Beispiele solcher Art sind Operatoren die in der Modellierung von optischen Metamaterialien auftauchen und links-indefinite Sturm-Liouville Operatoren.
Resumo:
In una formulazione rigorosa della teoria quantistica, la definizione della varietà Riemanniana spaziale su cui il sistema è vincolato gioca un ruolo fondamentale. La presenza di un bordo sottolinea l'aspetto quantistico del sistema: l'imposizione di condizioni al contorno determina la discretizzazione degli autovalori del Laplaciano, come accade con condizioni note quali quelle periodiche, di Neumann o di Dirichlet. Tuttavia, non sono le uniche possibili. Qualsiasi condizione al bordo che garantisca l'autoaggiunzione dell' operatore Hamiltoniano è ammissibile. Tutte le possibili boundary conditions possono essere catalogate a partire dalla richiesta di conservazione del flusso al bordo della varietà. Alcune possibili condizioni al contorno, permettono l'esistenza di stati legati al bordo, cioè autostati dell' Hamiltoniana con autovalori negativi, detti edge states. Lo scopo di questa tesi è quello di investigare gli effetti di bordo in sistemi unidimensionali implementati su un reticolo discreto, nella prospettiva di capire come simulare proprietà di edge in un reticolo ottico. Il primo caso considerato è un sistema di elettroni liberi. La presenza di edge states è completamente determinata dai parametri di bordo del Laplaciano discreto. Al massimo due edge states emergono, e possono essere legati all' estremità destra o sinistra della catena a seconda delle condizioni al contorno. Anche il modo in cui decadono dal bordo al bulk e completamente determinato dalla scelta delle condizioni. Ammettendo un' interazione quadratica tra siti primi vicini, un secondo tipo di stati emerge in relazione sia alle condizioni al contorno che ai parametri del bulk. Questi stati sono chiamati zero modes, in quanto esiste la possibilità che siano degeneri con lo stato fondamentale. Per implementare le più generali condizioni al contorno, specialmente nel caso interagente, è necessario utilizzare un metodo generale per la diagonalizzazione, che estende la tecnica di Lieb-Shultz-Mattis per Hamiltoniane quadratiche a matrici complesse.
Resumo:
Given the weight sequence for a subnormal recursively generated weighted shift on Hilbert space, one approach to the study of classes of operators weaker than subnormal has been to form a backward extension of the shift by prefixing weights to the sequence. We characterize positive quadratic hyponormality and revisit quadratic hyponormality of certain such backward extensions of arbitrary length, generalizing earlier results, and also show that a function apparently introduced as a matter of convenience for quadratic hyponormality actually captures considerable information about positive quadratic hyponormality.
Resumo:
An overview is given of the lessons learned from the introduction of multi-threading using OpenMP in tmLQCD. In particular, programming style, performance measurements, cache misses, scaling, thread distribution for hybrid codes, race conditions, the overlapping of communication and computation and the measurement and reduction of certain overheads are discussed. Performance measurements and sampling profiles are given for different implementations of the hopping matrix computational kernel.
Resumo:
The role of Soil Organic Carbon (SOC) in mitigating climate change, indicating soil quality and ecosystem function has created research interested to know the nature of SOC at landscape level. The objective of this study was to examine variation and distribution of SOC in a long-term land management at a watershed and plot level. This study was based on meta-analysis of three case studies and 128 surface soil samples from Ethiopia. Three sites (Gununo, Anjeni and Maybar) were compared after considering two Land Management Categories (LMC) and three types of land uses (LUT) in quasi-experimental design. Shapiro-Wilk tests showed non-normal distribution (p = 0.002, a = 0.05) of the data. SOC median value showed the effect of long-term land management with values of 2.29 and 2.38 g kg-1 for less and better-managed watersheds, respectively. SOC values were 1.7, 2.8 and 2.6 g kg-1 for Crop (CLU), Grass (GLU) and Forest Land Use (FLU), respectively. The rank order for SOC variability was FLU>GLU>CLU. Mann-Whitney U and Kruskal-Wallis test showed a significant difference in the medians and distribution of SOC among the LUT, between soil profiles (p<0.05, confidence interval 95%, a = 0.05) while it is not significant (p>0.05) for LMC. The mean and sum rank of Mann Whitney U and Kruskal Wallis test also showed the difference at watershed and plot level. Using SOC as a predictor, cross-validated correct classification with discriminant analysis showed 46 and 49% for LUT and LMC, respectively. The study showed how to categorize landscapes using SOC with respect to land management for decision-makers.