982 resultados para Proteïnes ras
Resumo:
Background: Brazilian Quilombos are Afro-derived communities founded mainly by fugitive slaves between the 16(th) and 19(th) centuries; they can be recognized today by ancestral and cultural characteristics. Each of these remnant communities, however, has its own particular history, which includes the migration of non-African derived people. Methods: The present work presents a proposal for the origin of the male founder in Brazilian quilombos based on Y-haplogroup distribution. Y haplogroups, based on 16 binary markers (92R7, SRY2627, SRY4064, SRY10831.1 and .2, M2, M3, M09, M34, M60, M89, M213, M216, P2, P3 and YAP), were analysed for 98 DNA samples from genetically unrelated men from three rural Brazilian Afro-derived communities-Mocambo, Rio das Ras and Kalunga-in order to estimate male geographic origin. Results: Data indicated significant differences among these communities. A high frequency of non-African haplogroups was observed in all communities. Conclusions: This observation suggested an admixture process that has occurred over generations and directional mating between European males and African female slaves that must have occurred on farms before the slaves escaped. This means that the admixture occurred before the slaves escaped and the foundation of the quilombo.
Resumo:
Proteomic approaches have been useful for the identification of aberrantly expressed proteins in complex diseases such as cancer. These proteins are not only potential disease biomarkers, but also targets for therapy. The aim of this study was to identify differentially expressed proteins in diffuse astrocytoma grade II, anaplastic astrocytoma grade III and glioblastoma multiforme grade IV in human tumor samples and in non-neoplastic brain tissue as control using 2-DE and MS. Tumor and control brain tissue dissection was guided by histological hematoxylin/eosin tissue sections to provide more than 90% of tumor cells and astrocytes. Six proteins were detected as up-regulated in higher grade astrocytomas and the most important finding was nucleophosmin (NPM) (p < 0.05), whereas four proteins were down-regulated, among them raf kinase inhibitor protein (RKIP) (p < 0.05). We report here for the first time the alteration of NPM and RKIP expression in brain cancer. Our focus on these proteins was due to the fact that they are involved in the PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, known for their contribution to the development and progression of gliomas. The proteomic data for NPM and RKIP were confirmed by Western blot, quantitative real-time PCR and immunohistochemistry. Due to the participation of NPM and RKIP in uncontrolled proliferation and evasion of apoptosis, these proteins are likely targets for drug development.
Resumo:
Morphological and molecular studies are beginning to distinguish separate evolutionary pathways for colorectal cancer, The serrated pathway encompassing hyperplastic aberrant crypt foci, hyperplastic polyps. mixed polyps, and serrated adenoma is increasingly being linked with genetic alterations, including DNA methylation, DNA microsatellite instability, Ii-ras mutation, and loss of chromosome Ip, The importance of the serrated pathway has been underestimated in terms of its frequency and potential for rapid progression, Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the osteoblastic differentiation, TIMP-2 and RECK presented differential expressions, where RECK expression was downregulated from the 14th day in contrast with an increase in TIMP-2. Concomitantly, our results showed a temporal regulation of two major signaling cascades during osteoblast differentiation: proliferation cascades in which RECK, PI3 K, and GSK-3 beta play a pivotal role and latter, differentiation cascades with participation of Ras, Rho, Rac-1, PKC alpha/beta, and TIMP-2. Furthermore, we observed that phosphorylation level of paxillin was downregulated while FAK(125) remained unchangeable, but active during extracellular matrix (ECM) remodeling. Concluding, our results provide evidences that RECK and TIMP-2 are involved in the control of ECM remodeling in distinct phases of osteoblast differentiation by modulating MMP activities and a multitude of signaling proteins governs these events.
Resumo:
Background: The systemic renin-angiotensin system (RAS) promotes the plasmatic production of angiotensin (Ang) II, which acts through interaction with specific receptors. There is growing evidence that local systems in various tissues and organs are capable of generating angiotensins independently of circulating RAS. The aims of this study were to investigate the expression and localization of RAS components in rat gingival tissue and evaluate the in vitro production of Ang II and other peptides catalyzed by rat gingival tissue homogenates incubated with different Ang II precursors. Methods: Reverse transcription - polymerase chain reaction assessed mRNA expression. Immunohistochemical analysis aimed to detect and localize renin. A standardized fluorimetric method with tripeptide hippuryl-histidyl-leucine was used to measure tissue angiotensin-converting enzyme (ACE) activity, whereas high performance liquid chromatography showed products formed after the incubation of tissue homogenates with Ang I or tetradecapeptide renin substrate (TDP). Results: mRNA for renin, angiotensinogen, ACE, and Ang II receptors (AT(1a), AT(1b), and AT(2)) was detected in gingival tissue; cultured gingival fibroblasts expressed renin, angiotensinogen, and AT(1a) receptor. Renin was present in the vascular endothelium and was intensely expressed in the epithelial basal layer of periodontally affected gingival tissue. ACE activity was detected (4.95 +/- 0.89 nmol histidyl-leucine/g/minute). When Ang I was used as substrate, Ang 1-9 (0.576 +/- 0.128 nmol/mg/minute), Ang II (0.066 +/- 0.008 nmol/mg/minute), and Ang 1-7 (0.111 +/- 0.017 nmol/mg/minute) were formed, whereas these same peptides (0.139 +/- 0.031, 0.206 +/- 0.046, and 0.039 +/- 0.007 nmol/mg/minute, respectively) and Ang 1 (0.973 +/- 0.139 nmol/mg/minute) were formed when TDP was the substrate. Conclusion: Local RAS exists in rat gingival tissue and is capable of generating Ang II and other vasoactive peptides in vitro. J Periodontol 2009;80:130-139.
Resumo:
High-level microsatellite instability (AISI-H) is demonstrated in 10 to 15% of sporadic colorectal cancers and in most cancers presenting In the inherited condition hereditary nonpolyposis colorectal cancer (HNPCC). Distinction between these categories of MSI-H cancer is of clinical importance and the aim of this study was to assess clinical, pathological, and molecular features that might he discriminatory. One hundred and twelve MSI-H colorectal cancers from families fulfilling the Bethesda criteria were compared with 57 sporadic MSI-H colorectal cancers. HNPCC cancers presented at a lower age (P < 0.001) with no sporadic MSI-H cancer being diagnosed before the age of 57 years. MSI was less extensive in HNPCC cancers with 72% microsatellite markers showing band shifts compared with 87% in sporadic tumors (P < 0.001). Absent immunostaining for hMSH2 was only found in HNPCC tumors. Methylation of bMLH1 was observed in 87% of sporadic cancers but also in 55% of HNPCC tumors that showed loss of expression of hMLH1 (P = 0.02). HNPCC cancers were more frequently characterized by aberrant beta -catenin immunostaining as evidenced by nuclear positivity (P < 0.001). Aberrant p53 immunostaining was infrequent in both groups. There were no differences with respect to 5q loss of heterozygosity or codon 12 K-ras mutation, which were infrequent in both groups. Sporadic MSI-H cancers were more frequently heterogeneous (P < 0.001), poorly differentiated (P = 0.02), mucinous (P = 0.02), and proximally located (P = 0.04) than RNPCC tumors. In sporadic MSI-H cancers, contiguous adenomas were likely to be serrated whereas traditional adenomas were dominant in HNPCC. Lymphocytic infiltration was more pronounced in HNPCC but the results did not reach statistical significance. Overall, HNPCC cancers were more like common colorectal cancer in terms of morphology and expression of beta -catenin whereas sporadic MSI-H cancers displayed features consistent with a different morphogenesis. No individual feature was discriminatory for all RN-PCC cancers. However, a model based on four features was able to classify 94.5% of tumors as sporadic or HNPCC. The finding of multiple differences between sporadic and familial MSI-H colorectal cancer with respect to both genotype and phenotype is consistent with tumorigenesis through parallel evolutionary pathways and emphasizes the importance of studying the two groups separately.
Resumo:
The significance of low-level DNA microsatellite instability (MSI-L) is not well understood. K-ras mutation is associated with MSI-L colorectal cancer and with the silencing of the DNA repair gene O-6-methylguanine DNA methyltransferase (MGMT) by methylation of its promoter region. MGMT methylation was studied in sporadic colorectal cancers stratified as DNA microsatellite instability-high (n = 23), MSI-L (n = 44), and microsatellite-stable (n = 23). Methylation-specific PCR was used to detect MGMT-promoter hypermethylation in 3 of 23 (13%) microsatellite instability-high, in 28 of 44 (64%) MSI-L, and in 6 of 23 (26%) microsatellite-stable cancers (P = 0.0001). K-ras was mutated in 20 of 29 (69%) methylated MSI-L cancers and in 2 of 15 (13%) unmethylated MSI-L cancers (P = 0.001), indicating a relationship between MGMT-methylation and mutation of K-ras. Loss of nuclear expression of MGMT was demonstrated immunohistochemically in 23 of 31 (74%) cancers with methylated MGMT and in 10 of 49 (20%) cancers with nonmethylated MGMT (P < 0.0001). Loss of expression of MGMT was also demonstrated in 9 of 31 serrated polyps. Silencing of MGMT may predispose to mutation by overwhelming the DNA mismatch repair system and occurs with greatest frequency in MSI-L colorectal cancers.
Resumo:
Important pathogenic alterations within established cancers are acquired during the premalignant stage. These genetic alterations can be grouped into specific neoplastic pathways that differ within and between anatomical sites. By understanding the mechanisms that determine the initiation and progression of each pathway, it will be possible to develop novel approaches to the diagnosis, prevention and treatment of cancer. This chapter outlines the principles underlying the molecular characterization of pre-malignant lesions, taking colorectal neoplasia as the main model.
Resumo:
Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions, We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation, General serine-threonine phosphatase inhibitors such sodium fluoride, or beta-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I-1 or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains, These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.
Resumo:
FAM is a developmentally regulated substrate-specific deubiquitylating enzyme. It binds the cell adhesion and signalling molecules beta -catenin and A-F-6 in vitro, and stabilises both in mammalian cell culture. To determine if FAM is required at the earliest stages of mouse development we examined its expression and function in preimplantation mouse embryos. FAM is expressed at all stages of preimplantation development from ovulation to implantation. Exposure of two-cell embryos to FAM-specific antisense, but not sense, oligodeoxynucleotides resulted in depletion of the FAM protein and failure Of the embryos to develop to blastocysts. Loss of FAM had two physiological effects, namely, a decrease in cleavage rate and an inhibition of cell adhesive events. Depletion of FAM protein was mirrored by a loss of beta -catenin such that very little of either protein remained following 72 h culture. The residual beta -catenin was localised to sites of cell-cell contact suggesting that the cytoplasmic pool of beta -catenin is stabilised by FAM. Although AF-6 levels initially decreased they returned to normal. However, the nascent protein was mislocalised at the apical surface of blastomeres. Therefore FAM is required for preimplantation mouse embryo development and regulates beta -catenin and AF-6 in vivo. (C) 2001 Elsevier Science Ireland Lid. All rights reserved.
Resumo:
The presence of an intrinsic renin-angiotensin system (RAS) in the rat epididymis has been previously established by showing the expression of several key RAS components, and in particular angiotensinogen, the indispensable element for the intracellular generation of angiotensin II. In this study, the possible involvement of this local epididymal RAS in the testicular effects of chronic hypoxia was investigated. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and by in situ hybridization histochemistry of the rat epididymis were used to show changes in localization and expression of angiotensinogen. Results from RT-PCR analysis demonstrated that chronic hypoxia caused a marked decrease (60%) in the expression of angiotensinogen mRNA, when compared with that in the normoxic epididymis. Western blot analysis demonstrated a less decrease (35%) in the expression of angiotensinogen protein. In situ hybridization histochemistry showed that the reduced angiotensinogen mRNA in chronic hypoxia was specifically localized to the epididymal epithelium from the cauda, corpus and caput regions of the epididymis; a distribution similar to that of normoxic rats. It was concluded that chronic hypoxia decreases the transcriptional and translational expression of angiotensinogen, and thus local formation of angiotensin II, in the rat epididymis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Specific point mutations in caveolin-3, a predominantly muscle-specific member of the caveolin family, have been implicated in limb-girdle muscular dystrophy and in rippling muscle disease. We examined the effect of these mutations on caveolin-3 localization and function. Using two independent assay systems, Raf activation in fibroblasts and neurite extension in PC12 cells, we show that one of the caveolin-3 point mutants, caveolin-3-C71W, specifically inhibits signaling by activated H-Ras but not by K-Ras. To gain insights into the effect of the mutant protein on H-Ras signaling, we examined the localization of the mutant proteins in fibroblastic cells and in differentiating myotubes. Unlike the previously characterized caveolin-3-DGV mutant, the inhibitory caveolin-3-C71W mutant reached the plasma membrane and colocalized with wild type caveolins. In BHK cells, caveolin-3-C71W associated with caveolae and in differentiating muscle cells with the developing T-tubule system. In contrast, the caveolin-3-P104L mutant accumulated in the Golgi complex and had no effect on H-Ras-mediated Raf activation. Inhibition by caveolin-3-C71W was rescued by cholesterol addition, suggesting that the mutant protein perturbs cholesterol-rich raft domains. Thus, we have demonstrated that a naturally occurring caveolin-3 mutation can inhibit signaling involving cholesterol-sensitive raft domains.
Resumo:
An understanding of the mechanisms that explain the initiation and early evolution of colorectal cancer should facilitate the development of new approaches to effective prevention and intervention. This review highlights deficiencies in the current model for colorectal neoplasia in which APC mutation is placed at the point of initiation. Other genes implicated in the regulation of apoptosis and DNA repair may underlie the early development of colorectal cancer. Inactivation of these genes may occur not by mutation or loss but through silencing mediated by methylation of the gene's promoter region. hMLH1 and MGMT are examples of DNA repair genes that are silenced by methylation. Loss of expression of hMLH1 and MGMT protein has been demonstrated immunohistochemically in serrated polyps. Multiple lines of evidence point to a serrated pathway of neoplasia that is driven by inhibition of apoptosis and the subsequent inactivation of DNA repair genes by promoter methylation. The earliest lesions in this pathway are aberrant crypt foci (ACF). These may develop Into hyperplastic polyps or transform while still of microscopic size into admixed polyps, serrated adenomas, or traditional adenomas. Cancers developing from these lesions may show high- or low-level microsatellite instability (MSI-H and MSI-L, respectively) or may be microsatellite stable (MSS). The suggested clinical model for this alternative pathway is the condition hyperplastic polyposis. If colorectal cancer is a heterogeneous disease comprising discrete subsets that evolve through different pathways, it is evident that these subsets will need to be studied individually in the future.
Resumo:
Colorectal cancer (CRC) has traditionally been classified into two groups: microsatellite stable/low-level instability (MSS/MSI-L) and high-level MSI (MSI-H) groups on the basis of multiple molecular and clinicopathologic criteria. Using methylated in tumor (MINT) markers 1, 2,12, and 31, we stratified 77 primary CRCs into three groups: MINT++ (>2), MINT+ (1-2), and MINT- (0 markers methylated). The MSS/MSI-L/ MINT++ group was indistinguishable from the MSI-H/MINT++ group with respect to methylation of p16(INK4a), p14(ARF), and RIZ1, and multiple morphological features. The only significant difference between MSI-H and non-MSI-H MINT++ cancers was the higher frequency of K-ras mutation (P < 0.004) and lower frequency of hMLH1 methylation (P < 0.001) in the latter. These data demonstrate that the separation of CRC into two nonoverlapping groups (MSI-H versus MSS/MSI-L) is a misleading oversimplification.
Resumo:
Because of subtle differences between mouse and human skin, mice have traditionally not been an ideal model to study melanoma development. Understanding of the molecular mechanisms of melanoma predisposition, however, has been greatly improved by modeling various pathway defects in the mouse. This review analyzes the latest developments in mouse models of melanoma, and summarizes what these may indicate about the development of this neoplasm in humans. Mutations of genes involved in human melanoma have been recapitulated with some unexpected results, particularly with respect to the role of the two transcripts (Ink4a and Arf) encoded by the Cdkn2a locus. Both the Ink4a/pRb and Arf/p53 pathways are involved in melanoma development in mice, and possible mechanisms of cross-talk between the two pathways are discussed. We also know from mouse models that Ras/mitogen-activated protein kinase pathway activation is very important in melanoma development, either through direct activation of Ras (e.g., Hras G12V), or via activation of Ras-effector pathways by other oncogenes (e.g., Ret, Hgf/Sf). Ras can cooperate with the Arf/p53 pathway, and probably the Ink4a/Rb pathway, to induce melanoma. These three growth regulation pathways (Ink4a/pRb, Arf/p53, and Ras/mitogen-activated protein kinase) seem to represent three major axes of melanoma development in mice. Finally, we summarize experiments using genetically modified mice that have given indications of the intensity and timing of ultraviolet radiation exposure that may be most responsible for melanoma development.