864 resultados para Porous


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ink-jet printing of nano-metallic colloidal fluids on to porous media such as coated papers has become a viable method to produce conductive tracks for low-cost, disposable printed electronic devices. However, the formation of well-defined and functional tracks on an absorbing surface is controlled by the drop imbibition dynamics in addition to the well-studied post-impact drop spreading behavior. This study represents the first investigation of the real-time imbibition of ink-jet deposited nano-Cu colloid drops on to coated paper substrates. In addition, the same ink was deposited on to a non-porous polymer surface as a control substrate. By using high-speed video imaging to capture the deposition of ink-jet drops, the time-scales of drop spreading and imbibition were quantified and compared with model predictions. The influences of the coating pore size on the bulk absorption rate and nano-Cu particle distribution have also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of porous blocks containing three different reactive magnesia-based cements - namely magnesia alone, magnesium oxide: Portland cement (PC) in 1:1 ratio, cured in ambient conditions, and magnesia alone, cured at elevated carbon dioxide conditions, in hydrochloric acid and magnesium sulfate solution - was investigated. Different aggressive chemical solution conditions were used, to which the samples were exposed for up to 12 months and then tested for strength and microstructure. The performance was also compared with that of standard PC-based blocks. The results showed the significant resistance to chemical attack offered by magnesia, both alone and with PC blend in the porous blocks when cured under ambient carbon dioxide conditions, and confirmed the much poorer performance of blocks made from PC alone. The blocks of solely magnesia cured in elevated carbon dioxide conditions, at 20% concentration, showed slightly lower resistance to acid attack than PC; however, the resistance to sulfate attack was much higher. © 2012 Thomas Telford Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 microm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a 'beam overlap' technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 microm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The details of the Element Free Galerkin (EFG) method are presented with the method being applied to a study on hydraulic fracturing initiation and propagation process in a saturated porous medium using coupled hydro-mechanical numerical modelling. In this EFG method, interpolation (approximation) is based on nodes without using elements and hence an arbitrary discrete fracture path can be modelled.The numerical approach is based upon solving two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Displacement increment and pore water pressure increment are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system of equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on the penalty method. In order to model discrete fractures, the so-called diffraction method is used.Examples are presented and the results are compared to some closed-form solutions and FEM approximations in order to demonstrate the validity of the developed model and its capabilities. The model is able to take the anisotropy and inhomogeneity of the material into account. The applicability of the model is examined by simulating hydraulic fracture initiation and propagation process from a borehole by injection of fluid. The maximum tensile strength criterion and Mohr-Coulomb shear criterion are used for modelling tensile and shear fracture, respectively. The model successfully simulates the leak-off of fluid from the fracture into the surrounding material. The results indicate the importance of pore fluid pressure in the initiation and propagation pattern of fracture in saturated soils. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension of nanodiamond in methanol causing them to clump together into "teepee" or "honeycomb" structures. These nanostructured CNT/BDD composite electrodes have been extensively characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Not only do these electrodes possess the excellent, well-known characteristics associated with BDD (large potential window, chemical inertness, low background levels), but also they have electroactive areas and double-layer capacitance values ∼450 times greater than those for the equivalent flat BDD electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of reactive magnesia (MgO) as the binder in porous blocks demonstrated significant advantages due to its low production temperatures and ability to carbonate, leading to significant strengths. This paper investigates the enhancement of the carbonation process through different curing conditions: water to cement ratio (0.6-0.9), CO2 concentration (5-20%), curing duration (1-7 days), relative humidity (55-98%), and wet/dry cycling frequency (every 0-3 days), improving the carbonation potential through increased amounts of CO2 absorbed and enhanced mechanical performance. UCS results were supported with SEM, XRD, and HCl acid digestion analyses. The results show that CO2 concentrations as low as 5% can produce the required strengths after only 1 day. Drier mixes perform better in shorter curing durations, whereas larger w/c ratios are needed for continuous carbonation. Mixes subjected to 78% RH outperformed all the others, also highlighting the benefits of incorporating wet/dry cycling to induce carbonation. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ion-exchange equilibrium of bovine serum albumin (BSA) to an anion exchanger, DEAE Spherodex M, has been studied by batch adsorption experiments at pH values ranging from 5.26 to 7.6 and ionic strengths from 10 to 117.1 mmol/l. Using the unadjustable adsorption equilibrium parameters obtained from batch experiments, the applicability of the steric mass-action (SMA) model was analyzed for describing protein ion-exchange equilibrium in different buffer systems. The parametric sensitivity analysis was performed by perturbing each of the model parameters, while holding the rest constant. The simulation results showed that, at high salt concentrations or low pHs close to the isoelectric point of the protein, the precision of the model prediction decreased. Parametric sensitivity analysis showed that the characteristic charge and protein steric factor had the largest effects on ion-exchange equilibrium, while the effect of equilibrium constant was about 70%-95% smaller than those of characteristic charge and steric factor under all conditions investigated. The SMA model with the relationship between the adjusted characteristic charge and the salt concentration can well predict the protein adsorption isotherms in a wide pH range from 5.84 to 7.6. It is considered that the SMA model could be further improved by taking into account the effect of salt concentration on the intermolecular interactions of proteins. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A free-standing, bidirectionally permeable and ultra-thin (500-1000 nm) porous anodic alumina membrane was fabricated using a two-step aluminium anodization process, which was then placed on top of a silicon film as an etching mask. The pattern was transferred to silicon using dry-etching technology, and the silicon nanopore array structure was formed. The factors which afflct the pattern transfer process are discussed. Observation of the nanopatterned sample under a scanning electron microscope shows that the structure obtained by this method is made up of uniform and highly ordered holes, which attains to 125 nm depth. The photoluminescence spectrum from the nanopatterned sample,the surface of which has been thermal-oxidized, shows that the the luminesce is evidently enhanced, the mechanism of which is based on the normally weak TO phonon assisted bandgap light-emission process, and the physical reasons that underlic the enhancement have been analyzed. The PL results do show an attractive optical characteristic, which provides a promising pathway to achieve efficient light emission from silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fascinating features of porous InP array-directed assembly of InAs nanostructures are presented. Strained InAs nanostructures are grown by molecular-beam epitaxy on electrochemical etched porous InP substrate. Identical porous substrate with different pore depths defines different growth modes. Shallow pores direct the formation of closely spaced InAs dots at the bottom. Deep pores lead to progressive covering of the internal surface of pores by epitaxial material followed by pore mouth shrinking. For any depth an obvious dot depletion feature occurs on top of the pore framework. This growth method presages a pathway to engineer quantum-dot molecules and other nanoelements for fancy physical phenomena. (c) 2006 American Institute of Physics.