856 resultados para Population set-based methods
Resumo:
1. The conservation status of the dingo Canis familiaris dingo is threatened by hybridization with the domestic dog C. familiaris familiaris. A practical method that can estimate the different levels of hybridization in the field is urgently required so that animals below a specific threshold of dingo ancestry (e.g. 1/4 or 1/2 dingoes) can reliably be identified and removed from dingo populations. 2. Skull morphology has been traditionally used to assess dingo purity, but this method does not discriminate between the different levels of dingo ancestry in hybrids. Furthermore, measurements can only be reliably taken from the skulls of dead animals. 3. Methods based on the analysis of variation in DNA are able to discriminate between the different levels of hybridization, but the validity of this method has been questioned because the materials currently used as a reference for dingoes are from captive animals of unproven genetic purity. The use of pre-European materials would improve the accuracy of this method, but suitable material has not been found in sufficient quantity to develop a reliable reference population. Furthermore, current methods based on DNA are impractical for the field-based discrimination of hybrids because samples require laboratory analysis. 4. Coat colour has also been used to estimate the extent of hybridization and is possibly the most practical method to apply in the field. However, this method may not be as powerful as genetic or morphological analyses because some hybrids (e.g. Australian cattle dog x dingo) are similar to dingoes in coat colour and body form. This problem may be alleviated by using additional visual characteristics such as the presence/absence of ticking and white markings.
Resumo:
Testing for simultaneous vicariance across comparative phylogeographic data sets is a notoriously difficult problem hindered by mutational variance, the coalescent variance, and variability across pairs of sister taxa in parameters that affect genetic divergence. We simulate vicariance to characterize the behaviour of several commonly used summary statistics across a range of divergence times, and to characterize this behaviour in comparative phylogeographic datasets having multiple taxon-pairs. We found Tajima's D to be relatively uncorrelated with other summary statistics across divergence times, and using simple hypothesis testing of simultaneous vicariance given variable population sizes, we counter-intuitively found that the variance across taxon pairs in Nei and Li's net nucleotide divergence (pi(net)), a common measure of population divergence, is often inferior to using the variance in Tajima's D across taxon pairs as a test statistic to distinguish ancient simultaneous vicariance from variable vicariance histories. The opposite and more intuitive pattern is found for testing more recent simultaneous vicariance, and overall we found that depending on the timing of vicariance, one of these two test statistics can achieve high statistical power for rejecting simultaneous vicariance, given a reasonable number of intron loci (> 5 loci, 400 bp) and a range of conditions. These results suggest that components of these two composite summary statistics should be used in future simulation-based methods which can simultaneously use a pool of summary statistics to test comparative the phylogeographic hypotheses we consider here.
Resumo:
Background: The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results: We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion: The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Coral reefs are in serious decline, and research in support of reef management objectives is urgently needed. Reef connectivity analyses have been highlighted as one of the major future research avenues necessary for implementing effective management initiatives for coral reefs. Despite the number of new molecular genetic tools and the wealth of information that is now available for population-level processes in many marine disciplines, scleractinian coral population genetic information remains surprisingly limited. Here we examine the technical problems and approaches used, address the reasons contributing to this delay in understanding, and discuss the future of coral population marker development. Considerable resources are needed to target the immediate development of an array of relevant genetic markers coupled with the rapid production of management focused data in order to help conserve our globally threatened coral reef resources.
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.
Resumo:
In this paper, a new differential evolution (DE) based power system optimal available transfer capability (ATC) assessment is presented. Power system total transfer capability (TTC) is traditionally solved by the repeated power flow (RPF) method and the continuation power flow (CPF) method. These methods are based on the assumption that the productions of the source area generators are increased in identical proportion to balance the load increment in the sink area. A new approach based on DE algorithm to generate optimal dispatch both in source area generators and sink area loads is proposed in this paper. This new method can compute ATC between two areas with significant improvement in accuracy compared with the traditional RPF and CPF based methods. A case study using a 30 bus system is given to verify the efficiency and effectiveness of this new DE based ATC optimization approach.
Resumo:
In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.
Resumo:
Many planning and control tools, especially network analysis, have been developed in the last four decades. The majority of them were created in military organization to solve the problem of planning and controlling research and development projects. The original version of the network model (i.e. C.P.M/PERT) was transplanted to the construction industry without the consideration of the special nature and environment of construction projects. It suited the purpose of setting up targets and defining objectives, but it failed in satisfying the requirement of detailed planning and control at the site level. Several analytical and heuristic rules based methods were designed and combined with the structure of C.P.M. to eliminate its deficiencies. None of them provides a complete solution to the problem of resource, time and cost control. VERT was designed to deal with new ventures. It is suitable for project evaluation at the development stage. CYCLONE, on the other hand, is concerned with the design and micro-analysis of the production process. This work introduces an extensive critical review of the available planning techniques and addresses the problem of planning for site operation and control. Based on the outline of the nature of site control, this research developed a simulation based network model which combines part of the logics of both VERT and CYCLONE. Several new nodes were designed to model the availability and flow of resources, the overhead and operating cost and special nodes for evaluating time and cost. A large software package is written to handle the input, the simulation process and the output of the model. This package is designed to be used on any microcomputer using MS-DOS operating system. Data from real life projects were used to demonstrate the capability of the technique. Finally, a set of conclusions are drawn regarding the features and limitations of the proposed model, and recommendations for future work are outlined at the end of this thesis.
Resumo:
In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.
Resumo:
This study presents some quantitative evidence from a number of simulation experiments on the accuracy of the productivitygrowth estimates derived from growthaccounting (GA) and frontier-based methods (namely data envelopment analysis-, corrected ordinary least squares-, and stochastic frontier analysis-based malmquist indices) under various conditions. These include the presence of technical inefficiency, measurement error, misspecification of the production function (for the GA and parametric approaches) and increased input and price volatility from one period to the next. The study finds that the frontier-based methods usually outperform GA, but the overall performance varies by experiment. Parametric approaches generally perform best when there is no functional form misspecification, but their accuracy greatly diminishes otherwise. The results also show that the deterministic approaches perform adequately even under conditions of (modest) measurement error and when measurement error becomes larger, the accuracy of all approaches (including stochastic approaches) deteriorates rapidly, to the point that their estimates could be considered unreliable for policy purposes.
Resumo:
This paper aims to reducing difference between sketches and photos by synthesizing sketches from photos, and vice versa, and then performing sketch-sketch/photo-photo recognition with subspace learning based methods. Pseudo-sketch/pseudo-photo patches are synthesized with embedded hidden Markov model. Because these patches are assembled by averaging their overlapping area in most of the local strategy based methods, which leads to blurring effect to the resulted pseudo-sketch/pseudo-photo, we integrate the patches with image quilting. Experiments are carried out to demonstrate that the proposed method is effective to produce pseudo-sketch/pseudo-photo with high quality and achieve promising recognition results. © 2009.
Resumo:
2000 Mathematics Subject Classification: 62H30, 62P99
Resumo:
Aims : Our aim was to investigate the proportional representation of people of South Asian origin in cardiovascular outcome trials of glucose-lowering drugs or strategies in Type 2 diabetes, noting that these are among the most significant pieces of evidence used to formulate the guidelines on which clinical practice is largely based. Methods : We searched for cardiovascular outcome trials in Type 2 diabetes published before January 2015, and extracted data on the ethnicity of participants. These were compared against expected values for proportional representation of South Asian individuals, based on population data from the USA, from the UK, and globally. Results : Twelve studies met our inclusion criteria and, of these, eight presented a sufficiently detailed breakdown of participant ethnicity to permit numerical analysis. In general, people of South Asian origin were found to be under-represented in trials compared with UK and global expectations and over-represented compared with US expectations. Among the eight trials for which South Asian representation could be reliably estimated, seven under-represented this group relative to the 11.2% of the UK diabetes population estimated to be South Asian, with the representation in these trials ranging from 0.0% to 10.0%. Conclusions : Clinicians should exercise caution when generalizing the results of trials to their own practice, with regard to the ethnicity of individuals. Efforts should be made to improve reporting of ethnicity and improve diversity in trial recruitment, although we acknowledge that there are challenges that must be overcome to make this a reality.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. ^ Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. ^ In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data. ^