946 resultados para Plants, Heat production in.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, high and low speed tip flows are investigated for a high-pressure turbine blade. Previous experimental data are used to validate a CFD code, which is then used to study the tip heat transfer in high and low speed cascades. The results show that at engine representative Mach numbers the tip flow is predominantly transonic. Thus, compared to the low speed tip flow, the heat transfer is affected by reductions in both the heat transfer coefficient and the recovery temperature. The high Mach numbers in the tip region (M>1.5) lead to large local variations in recovery temperature. Significant changes in the heat transfer coefficient are also observed. These are due to changes in the structure of the tip flow at high speed. At high speeds, the pressure side corner separation bubble reattachment occurs through supersonic acceleration which halves the length of the bubble when the tip gap exit Mach number is increased from 0.1 to 1.0. In addition, shock/boundary-layer interactions within the tip gap lead to large changes in the tip boundary-layer thickness. These effects give rise to significant differences in the heat-transfer coefficient within the tip region compared to the low-speed tip flow. Compared to the low speed tip flow, the high speed tip flow is much less dominated by turbulent dissipation and is thus less sensitive to the choice of turbulence model. These results clearly demonstrate that blade tip heat transfer is a strong function of Mach number, an important implication when considering the use of low speed experimental testing and associated CFD validation in engine blade tip design. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental. factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA3 on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA3 treatment. GA3 increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA3 was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-Linked immunosorbent assay (ELISA) increased in GA3 treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA3 increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcystin (MC) problem made more and more care about in China, intercellular MC (Int-MC) and cellular MC (Cel-MC) were important contents to reflect the producing-MC ability by cyanobacteria and by lakes. To study the correlations between Int-MC, Cel-MC concentration and biological and environmental factors, eight cyanobacterial blooming lakes were studied in the middle and lower reaches of the Yangtze River. Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR) were the primary toxin variants in our data. From the linear correlations between MC and environmental factors, cellular-YR had significant correlation with most of chemical factors except total nitrogen (TN) and the ratio of total nitrogen and total phosphorus (TN/TP), most intracellular MC analogues had significant correlations with total dissolved nitrogen (TDN), ammonium (NH4+), nitrite (NO2-), TP, total dissolved phosphorus (TDP), Microcystis. From the canonal correspondence analysis, Int-MC concentrations were closely related with the chemical and biological factors, such as TP, total organic carbon (TOC), chlorophyll a (Chl a), Microcystis biomass, et al. While Cel-MC contents, especially Cel-RR and Cel-LR, were closely related with light environmental in the lakes such as water depth and transparence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spermatogonia are the male germ stem cells that continuously produce sperm for the next generation. Spermatogenesis is a complicated process that proceeds through mitotic phase of stem cell renewal and differentiation, meiotic phase, and postmeiotic phase of spermiogenesis. Full recapitulation of spermatogenesis in vitro has been impossible, as generation of normal spermatogonial stem cell lines without immortalization and production of motile sperm from these cells after long-term culture have not been achieved. Here we report the derivation of a normal spermatogonial cell line from a mature medakafish testis without immortalization. After 140 passages during 2 years of culture, this cell line retains stable but growth factor-dependent proliferation, a diploid karyotype, and the phenotype and gene expression pattern of spermatogonial stem cells. Furthermore, we show that this cell line can undergo meiosis and spermiogenesis to generate motile sperm. Therefore, the ability of continuous proliferation and sperm production in culture is an intrinsic property of medaka spermatogonial stem cells, and immortalization apparently is not necessary to derive male germ cell cultures. Our findings and cell line will offer a unique opportunity to study and recapitulate spermatogenesis in vitro and to develop approaches for germ-line transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of estradiol (E(2)) on growth hormone (GH) production was investigated in gonad-intact female goldfish. It was first necessary to generate a specific antibody for use in immunocytochemistry, Western, and dot-blot analyses of GH production. To accomplish this, grass carp GH (gcGH) cDNA was cloned by the reverse transcription polymerase chain reaction (RT-PCR) and expressed in Echerichia coli and a specific polyclonal antibody to recombinant gcGH was generated in the rabbit. In Western blot, the anti-gcGH antibody specifically immunoreacted with recombinant gcGH, purified natural common carp GH, and with a single 21.5-kDa GH form from pituitary extracts of grass carp, common carp, goldfish, and zebrafish but not salmon, trout, or tilapia. Intraperitoneal injection of the recombinant gcGH enhanced the growth rates of juvenile common carp demonstrating biological activity of this GH preparation. Electron microscopic studies showed that the anti-gcGH-I antibody specifically reacted with GH localized in the secretory granules of the goldfish somatotroph. Using anti-gcGH-I in a dot-blot assay, it was found that in vivo implantation of solid silastic pellets containing E(2) (100 mu g/g body weight for 5 days) increased pituitary GH content by 150% in female goldfish. In a second, independent study employing a previously characterized anticommon carp GH antibody for radioimmunoassay, it was found that E(2) increased pituitary GH content by 170% and serum GH levels by approximately 350%. The E(2)-induced hypersecretion of GH and increase in pituitary GH levels was not associated with changes in steady-state pituitary GH mRNA levels, suggesting that this sex steroid may enhance GH synthesis at the posttranscriptional or translational level. Previous observations indicate that GH can stimulate ovarian E(2) production. The present results show that E(2) can in turn stimulate GH production, indicating the existence of a novel pituitary GH-ovarian feedback system in goldfish. (C) 1997 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Basic Research Programme of China G2009CB929300 National Natural Science Foundation of China 10404010 6052100160776061Supported by the National Basic Research Programme of China under Grant No G2009CB929300, and the National Natural Science Foundation of China under Grant Nos 10404010, 60521001 and 60776061.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seed bubbles are generated on microheaters located at the microchannel upstream and driven by a pulse voltage signal, to improve flow and heat transfer performance in microchannels. The present study investigates how seed bubbles stabilize flow and heat transfer in micro-boiling systems. For the forced convection flow, when heat flux at the wall surface is continuously increased, flow instability is self-sustained in microchannels with large oscillation amplitudes and long periods. Introduction of seed bubbles in time sequence improves flow and heat transfer performance significantly. Low frequency (similar to 10 Hz) seed bubbles not only decrease oscillation amplitudes of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures, but also shorten oscillation cycle periods. High frequency (similar to 100 Hz or high) seed bubbles completely suppress the flow instability and the heat transfer system displays stable parameters of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures. Flow visualizations show that a quasi-stable boundary interface from spheric bubble to elongated bubble is maintained in a very narrow distance range at any time. The seed bubble technique almost does not increase the pressure drop across microsystems, which is thoroughly different from those reported in the literature. The higher the seed bubble frequency, the more decreased heating surface temperatures are. A saturation seed bubble frequency of 1000-2000 Hz can be reached, at which heat transfer enhancement attains the maximum degree, inferring a complete thermal equilibrium of vapor and liquid phases in microchannels. Benefits of the seed bubble technique are the stabilization of flow and heat transfer, decreasing heating surface temperatures and improving temperature uniformity of the heating surface.