838 resultados para Physiological optics.
Resumo:
The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.
Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.
The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.
MicroRNA-132 is a physiological regulator of hematopoietic stem cell function and B-cell development
Resumo:
MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.
Sensitivity of sturgeons to environmental hypoxia: a review of physiological and ecological evidence
Resumo:
In this essay, three lines of evidence are developed that sturgeons in the Chesapeake Bay and elsewhere are unusually sensitive to hypoxic conditions: 1. In comparison to other fishes,sturgeons have a limited behavioral and physiological capacity to respond to hypoxia. Basal metabolism, growth, feeding rate, and survival are sensitive to changes in oxygen level, which may indicate a relatively poor ability of sturgeons to oxyregulate. 2. During summertime, temperatures >20°C amplify the effect of hypoxia on sturgeons and other fishes due to a temperature oxygen "squeeze" (Coutant 1987). In bottom waters, this interaction results in substantial reduction of habitat; in dry years, sturgeon nursery habitats in the Chesapeake Bay may be particularly reduced or even eliminated. 3. While evidence for population level effects due to hypoxia is circumstantial, there are corresponding trends between the absence of Atlantic sturgeon reproduction in estuaries like the Chesapeake Bay where summertime hypoxia predominates on a system-wide scale. Also, the recent and dramatic recovery of shortnose sturgeon in the Hudson River (4-bid increase in abundance from 1980 to1995) may have been stimulated by improvement of a large portion of the nursery habitat that was restored from hypoxia to normoxia during the period 1973-1978.
Resumo:
The results are described of eco-physiological investigations of the broad-pincered (Astacus astacus L.J.) crayfish and the long-pincered (Astacus astacus Esch.) crayfish, conducted in 1963—64 in the Institute of Zoology and Parasitology of the Academy of Science of the Lithuanian SSR, for the purpose of studying the interspecific relationship of these two species. In the course of the investigation were determined: the influence of the temperature of the environment on the consumption of oxygen by full grown individuals of both species and on the respiratory movements of the scaphognathites, the threshold temperatures and the saturation of the water by oxygen, the diel activity in the winter period.
Resumo:
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy. (c) 2006 Optical Society of America.
Resumo:
As a critical dimension shrinks, the degradation in image quality caused by wavefront aberrations of projection optics in lithographic tools becomes a serious problem. It is necessary to establish a technique for a fast and accurate in situ aberration measurement. We introduce what we believe to be a novel technique for characterizing the aberrations of projection optics by using an alternating phase-shifting mask. The even aberrations, such as spherical aberration and astigmatism, and the odd aberrations, such as coma, are extracted from focus shifts and image displacements of the phase-shifted pattern, respectively. The focus shifts and the image displacements are measured by a transmission image sensor. The simulation results show that, compared with the accuracy of the previous straightforward measurement technique, the accuracy of the coma measurement increases by more than 30% and the accuracy of the spherical-aberration measurement increases by approximately 20%. (c) 2006 Optical Society of America.
Resumo:
As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner. (C) 2006 Optical Society of America.
Resumo:
The osmotic pressure of the perivitelline fluid and the yolk of trout (Salmo trutta) eggs were measured separately by the Drucker-Schrein method. The permeability of the egg membrane and the variations in the osmotic pressure of the eggs when placed in salt solutions were also investigated.
Resumo:
This paper summarized the recent research results of Changhe Zhou's group of Information Optics Lab in Shanghai Institute of Optics and Fine Mechanics (SIOM). The first is about the Talbot self-imaging research. We have found the symmetry rule, the regular-rearranged neighboring phase difference rule and the prime-number decamping rule, which is briefly summarized in a recent educational publication of Optics and Photonics News, pp.46-50, November 2004. The second is about four novel microoptical gratings designed and fabricated in SIOM. The third is about the design and fabrication of novel supperresolution phase plates for beam shaping and possible use in optical storage. The fourth is to develop novel femtosecond laser information processing techniques by incorporating microoptical elements, for example, use of a pair of reflective Dammann gratings for splitting the femtosecond laser pulses. The most attractive feature of this approach is that the conventional beam splitter is avoided. The conventional beam splitter would introduce the unequal dispersion due to the broadband spectrum of ultrashort laser pulses, which will affect the splitting result. We implemented the Dammann splitting apparatus by using two-layered reflective Dammann gratings, which generates the almost same array without angular dispersion. We believe that our device is highly interesting for splitting femtosecond laser pulses.
Resumo:
The life cycle of the river lamprey, L. fluviatilis, is reviewed. The larval lamprey, or ammocoete, is a blind, filter-feeding animal, which normally lies concealed in the silt deposits of streams and rivers. After a period of 3-5 years in fresh water the ammocoete undergoes a metamorphosis in the summer months into a sexually immature, non-feeding stage known as the macrophthalia, which is active. This stage migrates downstream in late winter. It adopts a parasitic existence, in intertidal areas. After 18 months it returns to spawn in fresh water, after a final freshwater stage lasting up to 9 months. The river lamprey dies within a few days after the spawning period of 3-4 weeks, and none survive to spawn the following year.
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Loxodes faces special problems in living close to the oxic-anoxic boundary. In tightly-stratified ponds like Priest Pot its optimum environment may be quite narrow and it can be displaced by the slightest turbulence. Loxodes cannot sense an O sub(2) gradient directly but its ability to perceive gravity allows it to make relatively long vertical migrations. It is also sensitive to light and oxygen and it uses these environmental cues to modulate the parameters of its random motility: in the dark, it aggregates at a low O sub(2) tension and in bright light it aggregates in anoxic water. The oxic-anoxic boundary is also a zone where O sub(2) may be a scarce and transient resource, but Loxodes) can switch to nitrate respiration and exploit the pool of nitrate that often exists close to the base of the oxycline.