979 resultados para Perfused-rat-liver


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Dysfunction of the liver after transplantation may be related to the graft size and ischemia/reperfusion (I/R) injury. N-Acetylcysteine (NAC) exerts beneficial effects on livers undergoing ischemia reperfusion. We sought to evaluate NAC modulation on reduced livers associated with I/R injury. Methods. Male C57BL/6 mice of 8 weeks of age were divided into groups: 50% hepatectomy (G-Hep); NAC (G-Hep + NAC [150 mg/kg]) via vena cava 15 minutes before hepatectomy; ischemia (G-Hep + IR); NAC with hepatectomy (G-IR + Hep + Nac); and IR using 30 minutes selective hepatic occlusion and reperfusion for 24 hours. After 24 hours, the remaining liver was removed, for staining with hematoxylin and eosin or labeling by proliferating cell nuclear antigen. Blood was collected for biochemical evaluations. Significance was considered for P <= .05. Results. Aspartate aminotransferase was high in all studied groups reflecting the hepatectomy and intervention. injuries. However, when assessing alanine aminotransferase, which depicts liver function, induction of IR promoted a greater increase than hepatectomy (P = .0003). NAC decreased ALT activity in all groups, even in association with I/R (P < .05), reflecting a modulation of the injury. Necrosis resulting from IR was mitigated by NAC. The experimental model of 50% reduced live promoted regeneration of the hepatic remnant, which was accentuated by NAC, according to the total number of hepatocytes and PCNA values. Conclusion. NAC preserved the remnant liver in mice and stimulates regeneration even after IR injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To evaluate the effect of vitamin E supplementation on pancreatic gene expression of inflammatory markers in rats with alcoholic chronic pancreatitis. Methods: Wistar rats were divided into 3 groups: control (1), alcoholic chronic pancreatitis without (2) and with (3) vitamin E supplementation. Pancreatitis was induced by a liquid diet containing ethanol, cyclosporin A and cerulein. a-tocopherol content in plasma and liver and pancreas histopathology were analyzed. Gene expression of inflammatory biomarkers was analyzed by the quantitative real-time PCR technique. Results: The animals that received vitamin E supplementation had higher alpha-tocopherol amounts in plasma and liver. The pancreas in Group 1 showed normal histology, whereas in Groups 2 and 3, mild to moderate tissue destruction foci and mononuclear cell infiltration were detected. Real-time PCR analysis showed an increased expression of all genes in Groups 2 and 3 compared to Group 1. Vitamin E supplementation decreased the transcript number of 5 genes (alpha-SMA, COX-2, IL-6, MIP-3 alpha and TNF-alpha) and increased the transcript number of 1 gene (Pap). Conclusion: Vitamin E supplementation had anti-inflammatory and beneficial effects on the pancreatic gene expression of some inflammatory biomarkers in rats with alcoholic chronic pancreatitis, confirming its participation in the inflammatory response mechanisms in the pancreas. Copyright (c) 2012 S. Karger AG, Basel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitrosyl ruthenium complexes are promising NO donor agents with numerous advantages for the biologic applications of NO. We have characterized the NO release from the nitrosyl ruthenium complex [Ru(NO2)(bpy)(2)(4-pic)](+) (I) and the reactive oxygen/nitrogen species (ROS/RNS)-mediated NO actions on isolated rat liver mitochondria. The results indicated that oxidation of mitochondrial NADH promotes NO release from (I) in a manner mediated by NO2 formation (at neutral pH) as in mammalian cells, followed by an oxygen atom transfer mechanism (OAT). The NO released from (I) uncoupled mitochondria at low concentrations/incubation times and inhibited the respiratory chain at high concentrations/incubation times. In the presence of ROS generated by mitochondria NO gave rise to peroxynitrite, which, in turn, inhibited the respiratory chain and oxidized membrane protein-thiols to elicit a Ca2+-independent mitochondrial permeability transition; this process was only partially inhibited by cyclosporine-A, almost fully inhibited by the thiol reagent N-ethylmaleimide (NEM) and fully inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,45,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). These actions correlated with the release of cytochrome c from isolated mitochondria as detected by Western blotting analysis. These events, typically involved in cell necrosis and/or apoptosis denote a potential specific action of (I) and analogs against tumor cells via mitochondria-mediated processes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulin and the inhibition of the reninangiotensin system have independent benefits for ischemiareperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemiareperfusion. Isolated hearts were perfused (Langendorff technique) with KrebsHenseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was similar to 31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (similar to 2.2 times) in all groups vs. group KH and was similar to 35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was similar to 28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-organ-specific autoantibodies (NOSA) are well-recognized diagnostic markers of autoimmune hepatitis (All-l) and primary biliary cirrhosis (PBC), but can also be observed in patients with viral hepatitis as well as in healthy subjects. The aim of this study was to evaluate the prevalence of NOSA in subjects living in a rural community in Brazil and to correlate their occurrence with the presence of liver disease. Seven hundred twenty-five apparently healthy subjects were randomly selected for assessment of antinuclear (ANA), anti-smooth muscle (SMA), antimitochondrial (AMA), anti-liver/kidney microsome type 1, and anti-liver cytosol type 1 antibodies. Subjects with those NOSA were evaluated for the presence of AIH, PBC, and viral hepatitis. Reactivities for all NOSA, SMA, ANA, and AMA were detected, respectively, in 14, 10, 4, and 0.1% of subjects, with a mean titer of 1:40. NOSA-positive subjects were significantly older and more frequently females. No correlation was observed between the occurrence of NOSA and PBC. AIH, or viral hepatitis. The prevalence of NOSA in Brazilians was 14%. They were usually low titer. NOSA were more frequently observed in females and older subjects and their presence was not correlated with the presence of AIH, PBC, or viral hepatitis. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Programmed cell death (PCD) is a widely spread phenomenon among multi-cellular organisms. Without the deletion of cells no longer needed, the organism will not be able to develop in a predicted way. It is now belived that all cells have the capacity to self-destruct and that the survival of the cells is depending on the repression of this suicidal programme. PCD has turned out to show similarities in many different species and there are strong indications that the mechanisms running the programme might, at least in some parts, be evolutionarily conserced. PCD is a generic term for different programmes of cell destruction, such as apoptosis and autophagic PCD. An important tool to determine if a cell is undergoing PCD is the transmitting electron microscope. The aims of my study were to find out if, and in what way, the suspensor and endosperm in Vicia faba (Broad bean), which are short-lived structures, undergoes PCD. The endosperm degradation preceed the suspensor cell death and they differ to some extent ultrastructurally. The cell death occurs in both tissues about 13-14 days after pollination when the embryo proper is mature enough to support itself. It was found that both tissues are committed to autophagic PCD, a cell death characteristic of conspicuous formations of autophagic vacuoles. It was shown by histochemical staining that acid phosphatases are accumulated in these vacuoles but are also present in the cytoplasm. These vacuoles are similar to autophagic vacuoles formed in rat liver cells, indicating that autophagy is a widely spread phenomenon. DNA fragmentation is the first visible sign of PCD in both tissues and it is demonstrated by a labelling technique (TUNEL). In the endosperm nuclei the heterochromatin subsequently appears in the form of a network, while in the suspensor it is more conspicuous, with heterochromatin that forms large electron dense aggregates located close to the nuclear envelope. In the suspensor, the plastids develop into chromoplasts with lycopene crystals at the same time or shortly after DNA fragmentation. This is probably due to the fact that the suspensor plastids function as hormone producing organelles and support the embryo proper with indispensable growth factors. Later the embryo will be able to produce its own growth factors and the synthesis of these, in particular gibberelines, might be suppressed in the suspensor. The precursors can then be used for synthesis of lycopene instead. Both the suspensor and endosperm are going through autophagic PCD, but the process differs in some respects. This is probably due the the different function of the two tissues, and that the signals that trigger the process presumably are different. The embryo proper is probably the source of the death signal affecting the suspensor. The endosperm, which has a different origin and function, might be controlling the death signal within its own cell. The death might in this case be related to the age of the cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dronedarone is a new antiarrhythmic drug with an amiodarone-like benzofuran structure. Shortly after its introduction, dronedarone became implicated in causing severe liver injury. Amiodarone is a well-known mitochondrial toxicant. The aim of our study was to investigate mechanisms of hepatotoxicity of dronedarone in vitro and to compare them with amiodarone. We used isolated rat liver mitochondria, primary human hepatocytes, and the human hepatoma cell line HepG2, which were exposed acutely or up to 24h. After exposure of primary hepatocytes or HepG2 cells for 24h, dronedarone and amiodarone caused cytotoxicity and apoptosis starting at 20 and 50 µM, respectively. The cellular ATP content started to decrease at 20 µM for both drugs, suggesting mitochondrial toxicity. Inhibition of the respiratory chain required concentrations of ~10 µM and was caused by an impairment of complexes I and II for both drugs. In parallel, mitochondrial accumulation of reactive oxygen species (ROS) was observed. In isolated rat liver mitochondria, acute treatment with dronedarone decreased the mitochondrial membrane potential, inhibited complex I, and uncoupled the respiratory chain. Furthermore, in acutely treated rat liver mitochondria and in HepG2 cells exposed for 24h, dronedarone started to inhibit mitochondrial β-oxidation at 10 µM and amiodarone at 20 µM. Similar to amiodarone, dronedarone is an uncoupler and an inhibitor of the mitochondrial respiratory chain and of β-oxidation both acutely and after exposure for 24h. Inhibition of mitochondrial function leads to accumulation of ROS and fatty acids, eventually leading to apoptosis and/or necrosis of hepatocytes. Mitochondrial toxicity may be an explanation for hepatotoxicity of dronedarone in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Considerable unexplained intersubject variability in the debrisoquine metabolic ratio (urinary debrisoquine/4-hydroxydebrisoquine) exists within individual CYP2D6 genotypes. We speculated that debrisoquine was converted to as yet undisclosed metabolites. Thirteen healthy young volunteers, nine CYP2D6*1 homozygotes [extensive metabolizers (EMs)] and four CYP2D6*4 homozygotes [poor metabolizers (PMs)] took 12.8 mg of debrisoquine hemisulfate by mouth and collected 0- to 8- and 8- to 24-h urines, which were analyzed by gas chromatography-mass spectrometry (GCMS) before and after treatment with beta-glucuronidase. Authentic 3,4-dehydrodebrisoquine was synthesized and characterized by GCMS, liquid chromatography-tandem mass spectrometry, and (1)H NMR. 3,4-Dehydrodebrisoquine is a novel metabolite of debrisoquine excreted variably in 0- to 24-h urine, both in EMs (3.1-27.6% of dose) and PMs (0-2.1% of dose). This metabolite is produced from 4-hydroxydebrisoquine in vitro by human and rat liver microsomes. A previously unstudied CYP2D6*1 homozygote was administered 10.2 mg of 4-hydroxydebrisoquine orally and also excreted 3,4-dehydrodebrisoquine. EMs excreted 6-hydroxydebrisoquine (0-4.8%) and 8-hydroxydebrisoquine (0-1.3%), but these phenolic metabolites were not detected in PM urine. Debrisoquine and 4-hydroxydebrisoquine glucuronides were excreted in a highly genotype-dependent manner. A microsomal activity that probably does not involve cytochrome P450 participates in the further metabolism of 4-hydroxydebrisoquine, which we speculate may also lead to the formation of 1- and 3-hydroxydebrisoquine and their ring-opened products. In conclusion, this study suggests that the traditional metabolic ratio is not a true measure of the debrisoquine 4-hydroxylation capacity of an individual and thus may, in part, explain the wide intragenotype variation in metabolic ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Daunorubicin (DNR) is an anthracycline antibiotic used as a cancer chemotherapeutic agent. However, it causes mammary adenocarcinomas in female Sprague-Dawley (SD) rats. Vitamin E (E) has been found to reduce DNR carcinogenicity. I investigated the mechanism of DNR carcinogenicity and its interaction with E in SD rats by studying DNR-DNA adduct formation and the influence of E status on DNR clearance and free radical producing and detoxifying enzymes.^ The hypothesis was that DNR exerts its tumorigenic effect via free radicals generated during redox cycling and production of reactive intermediates capable of forming DNA adducts. E was postulated to act as a protective agent through a combination of its antioxidant property, modulation of drug clearance and levels of free radical producing and detoxifying enzymes.^ DNA adduct formation was measured by the nuclease P1 $\sp{32}$P-post labeling assay. In vitro, DNR was activated by rat liver microsomes and either NADPH or cumene hydrogen peroxide (CuOOH). Rat liver DNA incubated with this mixture formed two adducts when the cofactor was NADPH and three adducts when CuOOH was used. In vivo, SD rats were treated with i.v. doses of DNR. No detectable DNR-DNA adducts were formed in liver or mammary DNA in vivo, although there was an intensification of endogenous DNA adducts.^ Groups, 1, 2, 3 and 4 of weanling female SD rats were fed 0, 100, 1,000 and 10,000 mg $\alpha$-tocopheryl acetate/kg diet respectively. A comparison of Groups 1 and 4 showed no effect of E status on clearance of 10 mg tritiated DNR/kg body weight over 72 hours. However, liver cleared DNR at a faster rate than mammary epithelial cells (MEC).^ Xanthine oxidase, which catalyzes DNR redox cycling, was significantly decreased in liver and MEC of rats in group 4 compared to groups 1, 2, and 3. Detoxifying enzymes were not dramatically affected by E supplementation. Quinone reductase in MEC was significantly increased in group 4 compared to other groups. Overall, the liver had higher levels of free radical detoxifying enzymes compared to MEC.^ These data support a role of free radicals in DNR carcinogenicity because (1) endogenous DNA adducts formed due to free radical insult are further intensified by DNR treatment in vivo, (2) MEC, the specific target of DNR carcinogenicity, cannot rapidly clear DNR and have a lower free radical detoxifying capability than liver, (3) E supplementation caused lowering of free radical generating potential via xanthine oxidase, and increased DNR detoxification due to elevation of quinone reductase in MEC. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the cytochrome (CYT) P-450 mixed-function oxidase (MFO) in the biotransformation of hexachlorobenzene (HCB) was investigated, since in vivo interaction between this enzyme and chemical is very probable. HCB is a type I substrate with (Fe('3+)) CYT P-450 isozymes present in untreated, b-naphthoflavone (BNF) and phenobarbital (PB) induced rat liver microsomes. HCB dependent and saturable type I binding titrations yield spectral dissociation constants (K(,s)) of 180 and 83 uM for the isozymes present in untreated and PB induced microsomes, respectively. Purified CYT P-450b, the major isozyme induced by PB, produces HCB dependent and saturable type I spectra with a K(,s) of 0.38 uM.^ CYT P-450 mediated reductive dehalogenation occurs in microsomes and purified/reconstituted MFO systems and produces pentachlorobenzene (PCB) as the initial and major metabolite under both aerobic and anaerobic conditions. In microsomal reactions secondary metabolism of PCB occurs in the presence of oxygen. Pentachlorophenol (PCP) is produced only in aerobic reactions with PB induced microsomes with a concomitant decrease in PCB production. PCP is not detected in aerobic reactions with BNF induced microsomes, although PCB production is decreased compared to anaerobic conditions. A reaction scheme for the production of phenolic metabolities from PCB is deduced.^ CYT P-450 dependent and NADPH independent modes of PCB production occur with purified/reconstituted MFO systems and are consistent with dehalogenation pathways observed with microsomal experiments. The NADPH independent production of PCB requires native microsomal or purified MFO protein components and may be the result of nucleophilic displacement of a chlorine atom from HCB mediated or coupled with redox active functions (primary, secondary, tertiary and quarternary structures) of the proteins. CYT P-450 dependent production of PCB from HCB is isozyme dependent: CYT P-450c = CYT P-450d > CYT P-450a > CYT 450b. The low apparent specific activity may be due to non-optimal reconstitution conditions (e.g., isozyme choice and requirement of other microsomal elecron transport components) and secondary metabolism of PCB and the phenols derived from PCB. CYT P-450 mediated dehalogenation may be catalyzed through attack, by the iron oxene (postulated intermediate of CYT P-450 monooxygenations), at the chlorines of HCB instead of the aromatic nucleus. (Abstract shortened with permission of author.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I-compounds are newly discovered covalent DNA modifications detected by the $\sp{32}$P-postlabeling assay. They are age-dependent, tissue-specific and sex-different. The origin(s), chemistry and function(s) of I-compounds are unknown. The total level of I-compounds in 8-10 month old rat liver is 1 adduct in 10$\sp7$ nucleotides, which is not neglectable. It is proposed that I-compounds may play a role in spontaneous tumorigenesis and aging.^ In the present project, I-compounds were investigated by several different approaches. (1) Dietary modulation of I-compounds. (2) Comparison of I-compounds with persistent carcinogen DNA adducts and 5-methylcytosine. (3) Strain differences of I-compounds in relation to organ site spontaneous tumorigenesis. (4) Effects of nongenotoxic hepatocarcinogenes on I-compounds.^ It was demonstrated that the formation of I-compounds is diet-related. Rats fed natural ingredient diet exhibited more complex I-spot patterns and much higher levels than rats fed purified diet. Variation of major nutrients (carbohydrate, protein and fat) in the diet, produced quantitative differences in I-compounds of rat liver and kidney DNAs. Physiological level of vitamin E in the diet reduced intensity of one I-spot compared with vitamin E deficient diet. However, extremely high level of vitamin E in the diet gave extra spot and enhanced the intensities of some I-spots.^ In regenerating rat liver, I-compounds levels were reduced, as carcinogen DNA adducts, but not 5-methylcytosine, i.e. a normal DNA modification.^ Animals with higher incidences of spontaneous tumor or degenerative diseases tended to have a lower level of I-compounds.^ Choline devoid diet induced a drastic reduction of I-compound level in rat liver compared with choline supplemented diet. I-compound levels were reduced after multi-doses of carbon tetrachloride (CCl$\sb4$) exposure in rats and single dose exposure in mice. An inverse relationship was observed between I-compound level and DNA replication rate. CCl$\sb4$-related DNA adduct was detected in mice liver and intensities of some I-spots were enhanced 24 h after a single dose exposure.^ The mechanisms and explanations of these observations will be discussed. I-compounds are potentially useful indicators in carcinogenesis studies. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to characterize the cellular pathways along which nitric oxide (NO) stimulates renin secretion from the kidney. Using the isolated perfused rat kidney model we found that renin secretion stimulated 4- to 8-fold by low perfusion pressure (40 mmHg), by macula densa inhibition (100 μmol/liter of bumetanide), and by adenylate cyclase activation (3 nmol/liter of isoproterenol) was markedly attenuated by the NO synthase inhibitor nitro-l-arginine methyl ester (l-Name) (1 mM) and that the inhibition by l-Name was compensated by the NO-donor sodium nitroprusside (SNP) (10 μmol/liter). Similarly, inhibition of cAMP degradation by blockade of phosphodiesterase 1 (PDE-1) (20 μmol/liter of 8-methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine) or of PDE-4 (20 μmol/liter of rolipram) caused a 3- to 4-fold stimulation of renin secretion that was attenuated by l-Name and that was even overcompensated by sodium nitroprusside. Inhibition of PDE-3 by 20 μmol/liter of milrinone or by 200 nmol/liter of trequinsin caused a 5- to 6-fold stimulation of renin secretion that was slightly enhanced by NO synthase inhibition and moderately attenuated by NO donation. Because PDE-3 is a cGMP-inhibited cAMP-PDE the role of endogenous cGMP for the effects of NO was examined by the use of the specific guanylate cyclase inhibitor 1-H-(1,2,4)oxodiazolo(4,3a)quinoxalin-1-one (20 μmol). In the presence of 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one the effect of NO on renin secretion was abolished, whereas PDE-3 inhibitors exerted their normal effects. These findings suggest that PDE-3 plays a major role for the cAMP control of renin secretion. Our findings are compatible with the idea that the stimulatory effects of endogenous and exogenous NO on renin secretion are mediated by a cGMP-induced inhibition of cAMP degradation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase.