971 resultados para Pathway Model
Resumo:
Riboflavin (vitamin B2) is a precursor for coenzymes involved in energy production, biosynthesis, detoxification, and electron scavenging. Previously, we demonstrated that irradiated riboflavin (IR) has potential antitumoral effects against human leukemia cells (HL60), human prostate cancer cells (PC3), and mouse melanoma cells (B16F10) through a common mechanism that leads to apoptosis. Hence, we here investigated the effect of IR on 786-O cells, a known model cell line for clear cell renal cell carcinoma (CCRCC), which is characterized by high-risk metastasis and chemotherapy resistance. IR also induced cell death in 786-O cells by apoptosis, which was not prevented by antioxidant agents. IR treatment was characterized by downregulation of Fas ligand (TNF superfamily, member 6)/Fas (TNF receptor superfamily member 6) (FasL/Fas) and tumor necrosis factor receptor superfamily, member 1a (TNFR1)/TNFRSF1A-associated via death domain (TRADD)/TNF receptor-associated factor 2 (TRAF) signaling pathways (the extrinsic apoptosis pathway), while the intrinsic apoptotic pathway was upregulated, as observed by an elevated Bcl-2 associated x protein/B-cell CLL/lymphoma 2 (Bax/Bcl-2) ratio, reduced cellular inhibitor of apoptosis 1 (c-IAP1) expression, and increased expression of apoptosis-inducing factor (AIF). The observed cell death was caspase-dependent as proven by caspase 3 activation and poly(ADP-ribose) polymerase-1 (PARP) cleavage. IR-induced cell death was also associated with downregulation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homologue (avian)/protein serine/threonine kinase B/extracellular signal-regulated protein kinase 1/2 (Src/AKT/ERK1/2) pathway and activation of p38 MAP kinase (p38) and Jun-amino-terminal kinase (JNK). Interestingly, IR treatment leads to inhibition of matrix metalloproteinase-2 (MMP-2) activity and reduced expression of renal cancer aggressiveness markers caveolin-1, low molecular weight phosphotyrosine protein phosphatase (LMWPTP), and kinase insert domain receptor (a type III receptor tyrosine kinase) (VEGFR-2). Together, these results show the potential of IR for treating cancer.
Resumo:
Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.
Resumo:
Cocoa is rich in flavonoids, which are potent antioxidants with established benefits for cardiovascular health but unproven effects on neurodegeneration. Sirtuins (SIRTs), which make up a family of deacetylases, are thought to be sensitive to oxidation. In this study, the possible protective effects of cocoa in the diabetic retina were assessed. Rat Müller cells (rMCs) exposed to normal or high glucose (HG) or H2O2 were submitted to cocoa treatment in the presence or absence of SIRT-1 inhibitor and small interfering RNA The experimental animal study was conducted in streptozotocin-induced diabetic rats randomized to receive low-, intermediate-, or high-polyphenol cocoa treatments via daily gavage for 16 weeks (i.e., 0.12, 2.9 or 22.9 mg/kg/day of polyphenols). The rMCs exposed to HG or H2O2 exhibited increased glial fibrillary acidic protein (GFAP) and acetyl-RelA/p65 and decreased SIRT1 activity/expression. These effects were cancelled out by cocoa, which decreased reactive oxygen species production and PARP-1 activity, augmented the intracellular pool of NAD(+), and improved SIRT1 activity. The rat diabetic retinas displayed the early markers of retinopathy accompanied by markedly impaired electroretinogram. The presence of diabetes activated PARP-1 and lowered NAD(+) levels, resulting in SIRT1 impairment. This augmented acetyl RelA/p65 had the effect of up-regulated GFAP. Oral administration of polyphenol cocoa restored the above alterations in a dose-dependent manner. This study reveals that cocoa enriched with polyphenol improves the retinal SIRT-1 pathway, thereby protecting the retina from diabetic milieu insult.
Resumo:
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.
Resumo:
Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.
Resumo:
Oligodendrocytes and Schwann cells are engaged in myelin production, maintenance and repairing respectively in the central nervous system (CNS) and the peripheral nervous system (PNS). Whereas oligodendrocytes act only within the CNS, Schwann cells are able to invade the CNS in order to make new myelin sheaths around demyelinated axons. Both cells have some limitations in their activities, i.e. oligodendrocytes are post-mitotic cells and Schwann cells only get into the CNS in the absence of astrocytes. Ethidium bromide (EB) is a gliotoxic chemical that when injected locally within the CNS, induce demyelination. In the EB model of demyelination, glial cells are destroyed early after intoxication and Schwann cells are free to approach the naked central axons. In normal Wistar rats, regeneration of lost myelin sheaths can be achieved as early as thirteen days after intoxication; in Wistar rats immunosuppressed with cyclophosphamide the process is delayed and in rats administered cyclosporine it may be accelerated. Aiming the enlightening of those complex processes, all events concerning the myelinating cells in an experimental model are herein presented and discussed.
Resumo:
OBJECTIVE: To analyze if female Wistar rats at 56 weeks of age are a suitable model to study osteoporosis. MATERIALS AND METHODS: Female rats with 6 and 36 weeks of age (n = 8 per group) were kept over a 20-week period and fed a diet for mature rodents complete in terms of Ca, phosphorous, and vitamin D. Excised femurs were measured for bone mass using dual-energy x-ray absorptiometry, morphometry, and biomechanical properties. The following serum mar-kers of bone metabolism were analyzed: parathyroid hormone (PTH), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor Κappa B ligand (RANKL), C-terminal peptides of type I collagen (CTX-I), total calcium, and alkaline phosphatase (ALP) activity. RESULTS: Rats at 56 weeks of age showed important bone metabolism differences when compared with the younger group, such as, highest diaphysis energy to failure, lowest levels of OC, CTX-I, and ALP, and elevated PTH, even with adequate dietary Ca. CONCLUSION: Rats at 26-week-old rats may be too young to study age-related bone loss, whereas the 56-week-old rats may be good models to represent the early stages of age-related changes in bone metabolism.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.
Resumo:
This study ascertained whether under dental erosion models that closely mimics the real-life situation enamel and root dentin from bovine origin would be reliable substitutes for human counterparts. Through a 2x2 crossover design, in a first trial, 14 volunteers wore a palatal device containing slabs of bovine and human enamel. Half of the participants ingested (4x daily, for 10 days) orange juice first, crossing over to mineral water, while the remainder received the reverse sequence. In a second trial, volunteers wore devices with slabs of bovine and human root dentin. Except for the duration of each intraoral phase, which lasted 2 rather 10 days, the experiment with root dentin run exactly as for enamel. Dental substrates were analyzed for surface microhardness. Two-way ANOVAs (α=0.05) indicated no difference between the microhardness values recorded for human and bovine enamel (p=0.1350), but bovine root dentin had lower microhardness compared to its human counterpart (p=0.0432). While bovine enamel can reliably substitute its human counterpart in in situ dental erosion models, bovine root dentin does not seem to be a viable alternative to the corresponding human tissue.
Resumo:
PURPOSE: To develop an experimental surgical model in rats for the study of craniofacial abnormalities. METHODS: Full thickness calvarial defects with 10x10-mm and 5x8-mm dimensions were created in 40 male NIS Wistar rats, body weight ranging from 320 to 420 g. The animals were equally divided into two groups. The periosteum was removed and dura mater was left intact. Animals were killed at 8 and 16 weeks postoperatively and cranial tissue samples were taken from the defects for histological analysis. RESULTS: Cranial defects remained open even after 16 weeks postoperatively. CONCLUSION: The experimental model with 5x8-mm defects in the parietal region with the removal of the periosteum and maintenance of the integrity of the dura mater are critical and might be used for the study of cranial bone defects in craniofacial abnormalities.
Resumo:
The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.
Resumo:
The General Ocean Turbulence Model (GOTM) is applied to the diagnostic turbulence field of the mixing layer (ML) over the equatorial region of the Atlantic Ocean. Two situations were investigated: rainy and dry seasons, defined, respectively, by the presence of the intertropical convergence zone and by its northward displacement. Simulations were carried out using data from a PIRATA buoy located on the equator at 23º W to compute surface turbulent fluxes and from the NASA/GEWEX Surface Radiation Budget Project to close the surface radiation balance. A data assimilation scheme was used as a surrogate for the physical effects not present in the one-dimensional model. In the rainy season, results show that the ML is shallower due to the weaker surface stress and stronger stable stratification; the maximum ML depth reached during this season is around 15 m, with an averaged diurnal variation of 7 m depth. In the dry season, the stronger surface stress and the enhanced surface heat balance components enable higher mechanical production of turbulent kinetic energy and, at night, the buoyancy acts also enhancing turbulence in the first meters of depth, characterizing a deeper ML, reaching around 60 m and presenting an average diurnal variation of 30 m.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.