973 resultados para PROSTAGLANDIN ANALOGS
Resumo:
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB. In the present study, the receptor-independent, RI, 4D-QSAR method has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 81 thymidine analogues, and two corresponding subsets, reported as inhibitors of TMPKmt. The resulting optimized models are not only statistically significant with r (2) ranging from 0.83 to 0.92 and q (2) from 0.78 to 0.88, but also are robustly predictive based on test set predictions. The most and the least potent inhibitors in their respective postulated active conformations, derived from each of the models, were docked in the active site of the TMPKmt crystal structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. Moreover, the QSAR models provide insights regarding a probable mechanism of action of the analogues.
Resumo:
The first synthesis of two selenyldeoxycyclitols (4-bromo-2-phenylselenyl conduritol F and 6-phenylselenylconduritol F) is reported via a chemoenzymatic enantioselective route. The key step of the synthesis is the selenolysis of a vinyl epoxide. The new compounds were evaluated for their capacity to inhibit the growth of different microorganisms using a modification of the agar diffusion technique with thin layer chromatography plates as support. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5`-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors. The optimized (RI) 4D-QSAR models are statistically significant (r(2) = 0.90, q(2) = 0.83 entire set, r(2) = 0.86, q(2) = 0.80 high potency subset) and also possess good predictivity based on test set predictions. The most and least potent inhibitors, in their respective postulated active conformations derived from the models, were docked in the active site of the TMPK crystallographic structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. This model identifies new regions of the inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region of the 5`-arylthiourea moiety. These new regions of the ligands can be further explored and possibly exploited to identify new, novel, and, perhaps, better antituberculosis inhibitors of TMPKmt. Furthermore, the 3D-pharmacophores defined by these models can be used as a starting point for future receptor-dependent antituberculosis drug design as well as to elucidate candidate sites for substituent addition to optimize ADMET properties of analog inhibitors.
Resumo:
Molecular modi. cation is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N`-(benzofuroxan-5-yl) methylene] benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological pro. le. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 mu g/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The Topliss method was used to guide a synthetic path in support of drug discovery efforts toward the identification of potent antimycobacterial agents. Salicylic acid and its derivatives, p-chloro, p-methoxy, and m-chlorosalicylic acid, exemplify a series of synthetic compounds whose minimum inhibitory concentrations for a strain of Mycobacterium were determined and compared to those of the reference drug, p-aminosalicylic acid. Several physicochemical descriptors (including Hammett`s sigma constant, ionization constant, dipole moment, Hansch constant, calculated partition coefficient, Sterimol-L and -B-4 and molecular volume) were considered to elucidate structure-activity relationships. Molecular electrostatic potential and molecular dipole moment maps were also calculated using the AM1 semi-empirical method. Among the new derivatives, m-chlorosalicylic acid showed the lowest minimum inhibitory concentration. The overall results suggest that both physicochemical properties and electronic features may influence the biological activity of this series of antimycobacterial agents and thus should be considered in designing new p-aminosalicylic acid analogs.
Resumo:
BACKGROUND AND PURPOSE Bacterial lipopolysaccharide (LPS) induces fever through two parallel pathways; one, prostaglandin (PG)-dependent and the other, PG-independent and involving endothelin-1 (ET-1). For a better understanding of the mechanisms by which dipyrone exerts antipyresis, we have investigated its effects on fever and changes in PGE(2) content in plasma, CSF and hypothalamus induced by either LPS or ET-1. EXPERIMENTAL APPROACH Rats were given (i.p.) dipyrone (120 mg center dot kg-1) or indomethacin (2 mg center dot kg-1) 30 min before injection of LPS (5 mu g center dot kg-1, i.v.) or ET-1 (1 pmol, i.c.v.). Rectal temperature was measured by tele-thermometry. PGE(2) levels were determined in the plasma, CSF and hypothalamus by elisa. KEY RESULTS LPS or ET-1 induced fever and increased CSF and hypothalamic PGE(2) levels. Two hours after LPS, indomethacin reduced CSF and hypothalamic PGE(2) but did not inhibit fever, while at 3 h it reduced all three parameters. Three hours after ET-1, indomethacin inhibited the increase in CSF and hypothalamic PGE(2) levels but did not affect fever. Dipyrone abolished both the fever and the increased CSF PGE(2) levels induced by LPS or ET-1 but did not affect the increased hypothalamic PGE(2) levels. Dipyrone also reduced the increase in the venous plasma PGE(2) concentration induced by LPS. CONCLUSIONS AND IMPLICATIONS These findings confirm that PGE(2) does not play a relevant role in ET-1-induced fever. They also demonstrate for the first time that the antipyretic effect of dipyrone was not mechanistically linked to the inhibition of hypothalamic PGE(2) synthesis.
Resumo:
This study compared the ability of CRF and UCN1 to induce a thermoregulatory response when centrally injected into rats. The effects of antipyretic drugs and CRF receptor antagonists (CRF(1) and CRF(2)) on the temperature (T) changes induced by these peptides were also investigated. Rectal (rT) and tail skin (T(sk)) temperatures were measured with a thermistor probe while body (bT) temperature was measured with a battery-operated biotelemetry transmitter in male Wistar rats (200 g) every 30 min over a period of 6 h, after intracerebroventricular (i.c.v.) injection of 1 nmol of either CRF or UCN1. Rats were pre-treated with indomethacin (2 mg kg(-1), i.p.) or celecoxib (5 mg kg(-1), p.o.), dexamethasone (0.5 mg kg(-1), s.c.), astressin (a CRF(1)/CRF(2) antagonist, 7 nmol, icy.) or antalarmin (a CRF(1) antagonist, 20 mg kg 1, i.p.). The increase in body temperature induced by CRF was accompanied by a reduction in T(sk) while the response induced by UCN1 was accompanied by an elevation in T(sk). Indomethacin or celecoxib did not change the increases in rT caused by either CRF or UCN1. Although dexamethasone attenuated the increase in rectal temperature in response to CRF, dexamethasone did not modify the response induced by UCN1. Astressin blocked the UCN1-induced hyperthermia and reduced CRF-induced fever. Antalarmin did not modify the hyperthermia in response to UCN1, but reduced the fever evoked by CRF. This study demonstrated that CRF by acting on the CRF(1) receptor induces a prostaglandin-independent fever which seems to depend, at least in part, on the synthesis of other mediators while UCN1 acts on the CRF(2) receptor, promoting a hyperthermic response which seems to be independent on synthesis/release of any mediator. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study investigates the effects of chronic methionine intake on bradykinin (BK)-relaxation. Vascular reactivity experiments were performed on carotid rings from male Wistar rats. Treatment with methionine (0.1, 1 or 2 g kg(-1) per day) for 8 and 16 weeks, but not for 2 and 4 weeks, reduced the relaxation induced by BK. Indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ29548, a selective thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist prevented the reduction in BK-relaxation observed in the carotid from methionine-treated rats. Conversely, AH6809, a selective prostaglandin F(2 alpha) (PGF(2 alpha)) receptor antagonist did not alter BK-relaxation in the carotid from methionine-treated rats. The nitric oxide synthase (NOS) inhibitors L-NAME, L-NNA and 7-nitroindazole reduced the relaxation induced by BK in carotids from control and methionine-treated rats. In summary, we found that chronic methionine intake impairs the endothelium-dependent relaxation induced by BK and this effect is due to an increased production of endothelial vasoconstrictor prostanoids (possibly TXA(2)) that counteracts the relaxant action displayed by the peptide.
Resumo:
The aim of this study was to define the immunoregulatory role of prostaglandins in a mouse model of Strongyloides venezuelensis infection. Strongyloides venezuelensis induced an increase of eosinophils and mononuclear cells in the blood, peritoneal cavity fluid, and bronchoalveolar lavage fluid. Treatment with the dual cyclooxygenase (COX-1/-2) inhibitors indomethacin and ibuprofen, and the COX-2-selective inhibitor celecoxib partially blocked these cellular responses and was associated with enhanced numbers of infective larvae in the lung and adult worms in the duodenum. However, the drugs did not interfere with worm fertility. Cyclooxygenase inhibitors also inhibited the production of the T-helper type 2 (Th2) mediators IL-5, IgG1, and IgE, while indomethacin alone also inhibited IL-4, IL-10, and IgG2a. Cyclooxygenase inhibitors tended to enhance the Th1 mediators IL-12 and IFN-gamma. This shift away from Th2 immunity in cyclooxygenase inhibitor-treated mice correlated with reduced prostaglandin E(2) (PGE(2)) production in infected duodenal tissue. As PGE(2) is a well-characterized driver of Th2 immunity, we speculate that reduced production of this lipid might be involved in the shift toward a Th1 phenotype, favoring parasitism by S. venezuelensis. These findings provide new evidence that cyclooxygenase-derived lipids play a role in regulating host defenses against Strongyloides, and support the exploration of eicosanoid signaling for identifying novel preventive and therapeutic modalities against these infections.
Resumo:
P>The aim of this study was to evaluate a possible synergism between melatonin and meloxicam in up-regulating the immune response in male Wistar rats infected with Trypanosoma cruzi during immunosuppression phenomenon, which characterizes the acute phase of the Chagas` disease. Male Wistar rats were infected with the Y strain of T. cruzi. Experiments were performed on 7, 14 and 21 days post-infection. Several immunological parameters were evaluated including gamma-interferon (IFN-gamma), interleukin-2 (IL-2), nitric oxide (NO) and prostaglandin E(2) (PGE(2)). The combined treatment with melatonin and meloxicam significantly enhanced the release of IL-2 and INF-gamma into animals` serum, when compared with the infected control groups during the course of infection. Furthermore, the blockade of PGE(2) synthesis and the increased release of NO by macrophage cells from T. cruzi-infected animals contributed to regulate the production of Th1 subset cytokines significantly reducing the parasitaemia in animals treated with the combination of both substances. Therefore, our results suggest that the association of melatonin and meloxicam was more effective in protecting animals against the harmful actions of T. cruzi infection as compared with the treatments of meloxicam or melatonin alone.
Resumo:
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-alpha while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of similar to 110pmol/mu l) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) similar to 100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Resumo:
Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.
Resumo:
The potent, conformationally biased C5a agonist peptide YSFKPMPLaR (C5a(65-74), Y65, F67, P69, P71, D-Ala73) was used as a template to gain insight into the nature and importance of lysine at position 68 in the peptide-receptor interaction. A panel of YSFKPMPLaR analogs with systematic substitutions for Lys68 was evaluated for C5a receptor (C5aR) binding affinity and activation in two well-characterized assay systems: human polymorphonuclear leukocytes (PMNs) and human fetal artery. In addition, we determined the activity of these new analogs in transfected rat basophilic leukemia (RBL) cells in which the Glu at position 199 of the C5aR (wtGlu199) was replaced by a Gin (C5aR-Gln199) or a Lys (C5aR-Lys199). Our results indicated that Lys68 in YSFKPMPLaR plays an important role in binding the C5aR expressed on PMNs and RBL cells. Furthermore, the data indicated that Lys68 interacted with Glu199 of the C5aR in PMNs and RBL cells. In human fetal artery, however, Lys68 substitutions had little or no effect on activity, which suggested that the receptor conformation may be different in this tissue. Thus, the interaction between Lys68 of the decapeptide agonist and Glu199 of the C5aR may be cell type-specific and may form the molecular basis for tissue-specific responses to C5a agonists.
Resumo:
Activation of the human complement system of plasma proteins during immunological host defense can result in overproduction of potent proinflammatory peptides such as the anaphylatoxin C5a. Excessive levels of C5a are associated with numerous immunoinflammatory diseases, but there is as yet no clinically available antagonist to regulate the effects of C5a. We now describe a series of small molecules derived from the C-terminus of C5a, some of which are the most potent low-molecular-weight C5a receptor antagonists reported to date for the human polymorphonuclear leukocyte (PMN) C5a receptor. H-1 NMR spectroscopy was used to determine solution structures for two cyclic antagonists and to indicate that antagonism is related to a turn conformation, which can be stabilized in cyclic molecules that are preorganized for receptor binding. While several cyclic derivatives were of similar antagonistic potency, the most potent antagonist was a hexapeptide-derived macrocycle AcF[OPdChaWR] with an IC50 = 20 nM against a maximal concentration of C5a (100 nM) on intact human PMNs. Such potent C5a antagonists may be useful probes to investigate the role of C5a in host defenses and to develop therapeutic agents for the treatment of many currently intractable inflammatory conditions.