947 resultados para PROBABILISTIC FORECASTS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Box-Cox transformation is a technique mostly utilized to turn the probabilistic distribution of a time series data into approximately normal. And this helps statistical and neural models to perform more accurate forecastings. However, it introduces a bias when the reversion of the transformation is conducted with the predicted data. The statistical methods to perform a bias-free reversion require, necessarily, the assumption of Gaussianity of the transformed data distribution, which is a rare event in real-world time series. So, the aim of this study was to provide an effective method of removing the bias when the reversion of the Box-Cox transformation is executed. Thus, the developed method is based on a focused time lagged feedforward neural network, which does not require any assumption about the transformed data distribution. Therefore, to evaluate the performance of the proposed method, numerical simulations were conducted and the Mean Absolute Percentage Error, the Theil Inequality Index and the Signal-to-Noise ratio of 20-step-ahead forecasts of 40 time series were compared, and the results obtained indicate that the proposed reversion method is valid and justifies new studies. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Objective - For patients with medication refractory medial temporal lobe epilepsy (MTLE), surgery offers the hope of a cure. However, up to 30% of patients with MTLE continue to experience disabling seizures after surgery. The reasons why some patients do not achieve seizure freedom are poorly understood. A promising theory suggests that epileptogenic networks are broadly distributed in surgically refractory MTLE, involving regions beyond the medial temporal lobe. In this retrospective study, we aimed to investigate the distribution of epileptogenic networks in MTLE using Bayesian distributed EEG source analysis from preoperative ictal onset recordings. This analysis has the advantage of generating maps of source probability, which can be subjected to voxel-based statistical analyses.Methods - We compared 10 patients who achieved post-surgical seizure freedom with 10 patients who continued experiencing seizures after surgery. Voxel-based Wilcoxon tests were employed with correction for multiple comparisons.Results - We observed that ictal EEG source intensities were significantly more likely to occur in lateral temporal and posterior medial temporal regions in patients with continued seizures post-surgery.Conclusions - Our findings support the theory of broader spatial distribution of epileptogenic networks at seizure onset in patients with surgically refractory MTLE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interactions can be described hierarchically, and how this variation impacts the structure of species interactions in predator-prey networks, both of which are important components of ecological food webs. The stable isotope ratios of predator and prey species may be particularly useful for quantifying this variability, and we show how these data can be used to build probabilistic predator-prey networks. Moreover, the distribution of variation in strengths among interactions can be estimated from a limited number of observations. This distribution informs network structure, especially the key role of dietary specialization, which may be useful for predicting structural properties in systems that are difficult to observe. Finally, using three mammalian predator-prey networks ( two African and one Canadian) quantified from stable isotope data, we show that exclusion of link-strength variability results in biased estimates of nestedness and modularity within food webs, whereas the inclusion of body size constraints only marginally increases the predictive accuracy of the isotope-based network. We find that modularity is the consequence of strong link-strengths in both African systems, while nestedness is not significantly present in any of the three predator-prey networks.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Structural durability is an important criterion that must be evaluated for every type of structure. Concerning reinforced concrete members, chloride diffusion process is widely used to evaluate durability, especially when these structures are constructed in aggressive atmospheres. The chloride ingress triggers the corrosion of reinforcements; therefore, by modelling this phenomenon, the corrosion process can be better evaluated as well as the structural durability. The corrosion begins when a threshold level of chloride concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in literature, deterministic approaches fail to predict accurately the corrosion time initiation due the inherent randomness observed in this process. In this regard, structural durability can be more realistically represented using probabilistic approaches. This paper addresses the analyses of probabilistic corrosion time initiation in reinforced concrete structures exposed to chloride penetration. The chloride penetration is modelled using the Fick's diffusion law. This law simulates the chloride diffusion process considering time-dependent effects. The probability of failure is calculated using Monte Carlo simulation and the first order reliability method, with a direct coupling approach. Some examples are considered in order to study these phenomena. Moreover, a simplified method is proposed to determine optimal values for concrete cover.
Resumo:
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provade a very Complexity of inferences in polytree-shaped semi-qualitative probabilistic networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that interferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is construtive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynominal-time algorithm for SQPn. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.
Resumo:
Due to the growing interest in social networks, link prediction has received significant attention. Link prediction is mostly based on graph-based features, with some recent approaches focusing on domain semantics. We propose algorithms for link prediction that use a probabilistic ontology to enhance the analysis of the domain and the unavoidable uncertainty in the task (the ontology is specified in the probabilistic description logic crALC). The scalability of the approach is investigated, through a combination of semantic assumptions and graph-based features. We evaluate empirically our proposal, and compare it with standard solutions in the literature.
Resumo:
A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.
Resumo:
The objective of the work is the evaluation of the potential capabilities of navigation satellite signals to retrieve basic atmospheric parameters. A capillary study have been performed on the assumptions more or less explicitly contained in the common processing steps of navigation signals. A probabilistic procedure has been designed for measuring vertical discretised profiles of pressure, temperature and water vapour and their associated errors. Numerical experiments on a synthetic dataset have been performed with the main objective of quantifying the information that could be gained from such approach, using entropy and relative entropy as testing parameters. A simulator of phase delay and bending of a GNSS signal travelling across the atmosphere has been developed to this aim.