992 resultados para PHYSICS EVENT GENERATION
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement.
Resumo:
The magnetic Barkhausen noise (MBN) is a phenomenon sensitive to several kinds of magnetic material microstructure changes, as well as to variations in material plastic deformation and stress. This fact stimulates the development of MBN-based non-destructive testing (NDT) techniques for analyzing magnetic materials, being the proposition of such a method, the main objective of the present study. The behavior of the MBN signal envelope, under simultaneous variations of carbon content and plastic deformation, is explained by the domain wall dynamics. Additionally, a non-destructive parameter for the characterization of each of these factors is proposed and validated through the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Modern Integrated Circuit (IC) design is characterized by a strong trend of Intellectual Property (IP) core integration into complex system-on-chip (SOC) architectures. These cores require thorough verification of their functionality to avoid erroneous behavior in the final device. Formal verification methods are capable of detecting any design bug. However, due to state explosion, their use remains limited to small circuits. Alternatively, simulation-based verification can explore hardware descriptions of any size, although the corresponding stimulus generation, as well as functional coverage definition, must be carefully planned to guarantee its efficacy. In general, static input space optimization methodologies have shown better efficiency and results than, for instance, Coverage Directed Verification (CDV) techniques, although they act on different facets of the monitored system and are not exclusive. This work presents a constrained-random simulation-based functional verification methodology where, on the basis of the Parameter Domains (PD) formalism, irrelevant and invalid test case scenarios are removed from the input space. To this purpose, a tool to automatically generate PD-based stimuli sources was developed. Additionally, we have developed a second tool to generate functional coverage models that fit exactly to the PD-based input space. Both the input stimuli and coverage model enhancements, resulted in a notable testbench efficiency increase, if compared to testbenches with traditional stimulation and coverage scenarios: 22% simulation time reduction when generating stimuli with our PD-based stimuli sources (still with a conventional coverage model), and 56% simulation time reduction when combining our stimuli sources with their corresponding, automatically generated, coverage models.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by High Density Plasma Chemical Vapor Deposition. Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films: micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree strongly depend on the substrate surface conditions. The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy. In these samples, the final roughness and the sp(3) hybridization quantity depend strongly on the substrate surface condition. Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.
Resumo:
This paper presents two strategies for the upgrade of set-up generation systems for tandem cold mills. Even though these mills have been modernized mainly due to quality requests, their upgrades may be made intending to replace pre-calculated reference tables. In this case, Bryant and Osborn mill model without adaptive technique is proposed. As a more demanding modernization, Bland and Ford model including adaptation is recommended, although it requires a more complex computational hardware. Advantages and disadvantages of these two systems are compared and discussed and experimental results obtained from an industrial cold mill are shown.
Resumo:
Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Samples of 15 second generation soy-based products (n = 3), commercially available, were analyzed for their protein and isoflavone contents and in vitro antioxidant activity, by means of the Folin-Ciocalteu reducing ability, DPPH radical scavenging capacity, and oxygen radical absorbance capacity. Isoflavone identification and quantification were performed by high-performance liquid chromatography. Products containing soy and/or soy-based ingredients represent important sources of protein in addition to the low fat amounts. However, a large variation in isoflavone content and in vitro antioxidant capacity was observed. The isoflavone content varied from 2.4 to 18.1 mg/100 g (FW), and soy kibe and soy sausage presented the highest amounts. Chocolate had the highest antioxidant capacity, but this fact was probably associated with the addition of cocoa liquor, a well-known source of polyphenolics. This study showed that the soy-based foods do not present a significant content of isoflavones when compared with the grain, and their in vitro antioxidant capacity is not related with these compounds but rather to the presence of other phenolics and synthetic antioxidants, such as sodium erythorbate. However, they may represent alternative sources and provide soy protein, isoflavones, and vegetable fat for those who are not ready to eat traditional soy foods.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Oxidized Low-Density Lipoproteins (oxLDL) and autoantibodies against oxLDL are important in the development of atherosclerotic lesions. Statins are efficacious in the control of dyslipidemia and prevention of atherosclerosis; however, many questions concerning the mechanism of action of such drugs remain unknown. This work investigated the effect of simvastatin on generation of autoantibodies against oxLDL and development of atherosclerosis in rabbits. The animals were divided into three groups: control, hypercholesterolemic, and hypercholesterolemic simvastatin (3.0 mg simvastatin/ kg body weight). Concentrations of autoantibodies against oxLDL were determined on days 0,30 and 60 of the experiment and the atherosclerotic lesions were evaluated at the end of the study. Simvastatin reduced intimal proliferation in the thoracic region, prevented arterial calcification and inhibited the generation of autoantibodies against oxLDL. In conclusion, daily administration of simvastatin slows down atherosclerotic lesion development in rabbits with induced hypercholesterolemia and inhibition on generation of autoantibodies against oxLDL contributes to the cardioprotective effect observed.
Resumo:
In this preliminary study eighteen p-substituted benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazides with antimicrobial activity were evaluated against multidrug-resistant Staphylococcus aureus, correlating the three-dimensional characteristics of the ligands with their respective bioactivities. The computer programs Sybyl and CORINA were used, respectively, for the design and three-dimensional conversion of the ligands. Molecular interaction fields were calculated using GRID program. Calculations using Volsurf resulted in a statistically consistent model with 48 structural descriptors showing that hydrophobicity is a fundamental property in the analyzed biological response.
Resumo:
We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extramitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extramitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.
Resumo:
We report on a convergent approach for the generation of dendrimers containing the [Ru3O(aC)(6)] electroactive core, of great interest as multielectron transfer catalysts. The proposed strategy is based on the generation of the trimeric complex [(Ru3O(ac)(6)(4-pic)(2)(pz))2-mu(2)-Ru3O(ac)(6)(CH3OH)](3+) (ac = acetate, 4-pic = 4-methylpyridine, pz = pyrazine). In this complex, the labile CH3OH ligand can be displaced by the bridging pyrazine ligand of [Ru3O(ac)(6)(pz)3](0), leading to the self-assembly of the [{[Ru3O(ac)(6)(4-pic)(2)(pz)](2)-mu(2)-Ru3O(ac)(6)(pz)}(3)- mu(3)-Ru3O(ac)(6)](n+) dendrimer containing 30 ruthenium atoms. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.