929 resultados para Oracle bones
Resumo:
Contralateral bones are often used in many medical applications but it is assumed that their bilateral differences are insignificant. Previous studies used a limited number of distance measurements in quantifying the corresponding differences; therefore, little is known about their bilateral 3D surface asymmetries. The aim of the study is to develop a comprehensive method to quantify geometrical asymmetries between the left and right tibia in order to provide first results on whether the contralateral tibia can be used as an equivalent reference. In this study, 3D bone models were reconstructed from CT scans of seven tibiae pairs, and 34 variables consisting of 2D and 3D measurements were measured from various anatomical regions. All 2D measurements, and lateral plateau and distal subchondral bone surface measurements showed insignificant differences (p > 0.05), but the rest of the surfaces showed significant differences (p < 0.05). Our results suggest that the contralateral tibia can be used as a reference especially in surgical applications such as articular reconstructions since the bilateral differences in the subchondral bone surfaces were less than 0.3 mm. The method can also be potentially transferable to other relevant studies that require the accurate quantification of bone bilateral asymmetries.
Resumo:
The effects of estrogen deficiency on bone characteristics are site-dependent, with the most commonly studied sites being appendicular long bones (proximal femur and tibia) and axial bones (vertebra). The effect on the maxillary and mandibular bones is still inconsistent and requires further investigation. This study was designed to evaluate bone quality in the posterior maxilla of ovariectomized rats in order to validate this site as an appropriate model to study the effect of osteoporotic changes. Methods: Forty-eight 3-month-old female Sprague-Dawley rats were randomly divided into two groups: an ovariectomized group (OVX, n=24) and Sham-operated group (SHAM, n=24). Six rats were randomly sacrificed from both groups at time points 8, 12, 16 and 20 weeks. The samples from tibia and maxilla were collected for Micro CT and histological analysis. For the maxilla, the volume of interest (VOI) area focused on the furcation areas of the first and second molar. Trabecular bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th.), trabecular number (Tb.N.), trabecular separation (Tb.Sp.), and connectivity density (Conn.Dens) were analysed after Micro CT scanning. Results: At 8 weeks the indices BV/TV, Tb.Sp, Tb.N and Conn.Dens showed significant differences (P<0.05) between the OVX and SHAM groups in the tibia. Compared with the tibia, the maxilla developed osteoporosis at a later stage, with significant changes in maxillary bone density only occurring after 12 weeks. Compared with the SHAM group, both the first and second molars of the OVX group showed significantly decreased BV/TV values from 12 weeks, and these changes were sustained through 16 and 20 weeks. For Tb.Sp, there were significant increases in bone values for the OVX group compared with the SHAM group at 12, 16 and 20 weeks. Histological changes were highly consistent with Micro CT results. Conclusion: This study established a method to quantify the changes of intra-radicular alveolar bone in the posterior maxilla in an accepted rat osteoporosis model. The degree of the osteoporotic changes to trabecular bone architecture is site-dependent and at least 3 months are required for the osteoporotic effects to be apparent in the posterior maxilla following rat OVX.
Resumo:
Podiatry is the medical science of the bones, muscle and skin of the foot. Paul Bennett is sometimes called on by police to help solve crime. He can provide vital evidence by applying his medical expertise and extraordinary talent for pattern recognition to footprints left at crime-scenes. Paul is a senior lecturer at the Quensland University of Technology's School of Clinical Sciences.
Resumo:
Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block cipher is ideal. We address the problem of building indifferentiable compression functions from the PGV compression functions. We consider a general form of 64 PGV compression functions and replace the linear feed-forward operation in this generic PGV compression function with an ideal block cipher independent of the one used in the generic PGV construction. This modified construction is called a generic modified PGV (MPGV). We analyse indifferentiability of the generic MPGV construction in the ideal cipher model and show that 12 out of 64 MPGV compression functions in this framework are indifferentiable from a FIL-RO. To our knowledge, this is the first result showing that two independent block ciphers are sufficient to design indifferentiable single-block-length compression functions.
Resumo:
Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of tibia. Selection of the correct nail insertion point is important for axial alignment of bone fragments and to avoid iatrogenic fractures. However, the standard entry point (SEP) may not always optimise the bone-nail fit due to geometric variations of bones. This study aimed to investigate the optimal entry for a given bone-nail pair using the fit quantification software tool previously developed by the authors. The misfit was quantified for 20 bones with two nail designs (ETN and ETN-Proximal Bend) related to the SEP and 5 entry points which were 5 mm and 10 mm away from the SEP. The SEP was the optimal entry point for 50% of the bones used. For the remaining bones, the optimal entry point was located 5 mm away from the SEP, which improved the overall fit by 40% on average. However, entry points 10 mm away from the SEP doubled the misfit. The optimised bone-nail fit can be achieved through the SEP and within the range of a 5 mm radius, except posteriorly. The study results suggest that the optimal entry point should be selected by considering the fit during insertion and not only at the final position.
The suffix-free-prefix-free hash function construction and its indifferentiability security analysis
Resumo:
In this paper, we observe that in the seminal work on indifferentiability analysis of iterated hash functions by Coron et al. and in subsequent works, the initial value (IV) of hash functions is fixed. In addition, these indifferentiability results do not depend on the Merkle–Damgård (MD) strengthening in the padding functionality of the hash functions. We propose a generic n -bit-iterated hash function framework based on an n -bit compression function called suffix-free-prefix-free (SFPF) that works for arbitrary IV s and does not possess MD strengthening. We formally prove that SFPF is indifferentiable from a random oracle (RO) when the compression function is viewed as a fixed input-length random oracle (FIL-RO). We show that some hash function constructions proposed in the literature fit in the SFPF framework while others that do not fit in this framework are not indifferentiable from a RO. We also show that the SFPF hash function framework with the provision of MD strengthening generalizes any n -bit-iterated hash function based on an n -bit compression function and with an n -bit chaining value that is proven indifferentiable from a RO.
Resumo:
Anatomically pre-contoured fracture fixation plates are a treatment option for bone fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. However, recent studies showed that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. Therefore, the plates have to be manually fitted and deformed by surgeons to fit each patient optimally. The process is time-intensive and labor-intensive, and could lead to adverse clinical implications such as wound infection or plate failure. This paper proposes a new iterative method to simulate the patient-specific deformation of an optimally fitting plate for pre-operative planning purposes. We further demonstrate the validation of the method through a case study. The proposed method involves the integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks, and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.
Resumo:
The origin of terrestrial tetrapods was a key event in vertebrate evolution, yet how and when it occurred remains obscure, due to scarce fossil evidence. Here, we show that the study of palaeopathologies, such as broken and healed bones, can help elucidate poorly understood behavioural transitions such as this. Using high-resolution finite element analysis, we demonstrate that the oldest known broken tetrapod bone, a radius of the primitive stem tetrapod Ossinodus pueri from the mid-Viséan (333 million years ago) of Australia, fractured under a high-force, impact-type loading scenario. The nature of the fracture suggests that it most plausibly occurred during a fall on land. Augmenting this are new osteological observations, including a preferred directionality to the trabecular architecture of cancellous bone. Together, these results suggest that Ossinodus, one of the first large (>2m length) tetrapods, spent a significant proportion of its life on land. Our findings have important implications for understanding the temporal, biogeographical and physiological contexts under which terrestriality in vertebrates evolved. They push the date for the origin of terrestrial tetrapods further back into the Carboniferous by at least two million years. Moreover, they raise the possibility that terrestriality in vertebrates first evolved in large tetrapods in Gondwana rather than in small European forms, warranting a re-evaluation of this important evolutionary event.
Resumo:
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ~2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2×10-9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3×10-12, and -0.16 SD per G allele, P = 1.2×10-15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10-9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10-6 and rs2707466: OR = 1.22, P = 7.2×10-6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16-/- mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5×10-13<P<5.9×10-4) at both femur and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture. © 2012 Zheng et al.
Resumo:
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.
Resumo:
Background The genetic mutation resulting in osteogenesis imperfecta (OI) type V was recently characterised as a single point mutation (c.-14C > T) in the 5' untranslated region (UTR) of IFITM5, a gene encoding a transmembrane protein with expression restricted to skeletal tissue. This mutation creates an alternative start codon and has been shown in a eukaryotic cell line to result in a longer variant of IFITM5, but its expression has not previously been demonstrated in bone from a patient with OI type V. Methods Sanger sequencing of the IFITM5 5' UTR was performed in our cohort of subjects with a clinical diagnosis of OI type V. Clinical data was collated from referring clinicians. RNA was extracted from a bone sample from one patient and Sanger sequenced to determine expression of wild-type and mutant IFITM5. Results: All nine subjects with OI type V were heterozygous for the c.-14C > T IFITM5 mutation. Clinically, there was heterogeneity in phenotype, particularly in the manifestation of bone fragility amongst subjects. Both wild-type and mutant IFITM5 mRNA transcripts were present in bone. Conclusions The c.-14C > T IFITM5 mutation does not result in an RNA-null allele but is expressed in bone. Individuals with identical mutations in IFITM5 have highly variable phenotypic expression, even within the same family.
Resumo:
Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis.
Resumo:
Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia characterized by aggressive osteolysis, particularly affecting the carpal and tarsal bones, and is frequently associated with progressive renal failure. Using exome capture and next-generation sequencing in five unrelated simplex cases of MCTO, we identified previously unreported missense mutations clustering within a 51 base pair region of the single exon of MAFB, validated by Sanger sequencing. A further six unrelated simplex cases with MCTO were also heterozygous for previously unreported mutations within this same region, as were affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal development. Identification of this gene paves the way for development of novel therapeutic approaches for this crippling disease and provides insight into normal bone and kidney development.
Resumo:
Modern intramedullary nails, which are utilised for the treatment of bone fractures, need to be designed to fit the anatomy of the patient population. Traditional and recent semi-automated approaches for quantifying the anatomical fit between bones and nail designs suffer from various drawbacks. This thesis proposed an automated comprehensive nail design validation method. The developed software tool was utilised to quantify the anatomical fit of four commercial nail designs. Furthermore, the thesis demonstrated the existence of a bone-nail specific nail entry point. The developed method is of great benefit for the implant manufacturing industry as a nail design validation tool.
Resumo:
Recent studies have reported loss of function mutations in the LEMD3 gene, encoding an inner nuclear membrane protein that influences Smad signaling, as a cause of osteopoikilosis, Buschke-Ollendorff syndrome, and melorheostosis. We investigated LEMD3 in a three-generation family with osteopoikilosis from the Azores, an affected father and daughter from Ireland with osteopoikilosis (the daughter also had melorheostosis), and two other individuals from the UK with isolated melorheostosis. We found a novel C to T substitution at position 2032 bp (cDNA) in exon 8 of LEMD3, resulting in a premature stop codon at amino acid position 678. This mutation co-segregates with the osteopoikilosis phenotype in both the Azorean family and the Irish family. It was not detected in any of the six unaffected family members or in 342 healthy Caucasian individuals. No LEMD3 mutations were detected in the two patients with sporadic melorheostosis. The LEMD3 mutation reported was clearly the cause of osteopoikilosis in the two families but its relationship to melorheostosis in one of the family members is still unclear. Perhaps unsurprisingly in what is a segmental disease, we did not find LEMD3 mutations in peripheral-blood-derived DNA from the two other individuals with sporadic melorheostosis. The nature of the additional genetic and/or environmental influences required for the development of melorheostosis in those with osteopoikilosis requires further investigation.