628 resultados para OXIDANT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Findings from animal studies suggest that components of fruit and vegetables (F&V) may protect against, and even reverse, age-related decline(1,2) in aspects of cognitive functioning such as spatial working memory (SWM). Human subjects in vivo and in vitro studies indicate that anti-inflammatory, anti-oxidant and cell-signalling properties of flavonoids and carotenoids, non-nutrient components of F&V, may underpin this protective effect(3–5). The Flavonoid University of Reading Study (FLAVURS), designed to explore the dose-response relationship between dietary F&V flavonoids and CVD, enabled the investigation of such an association with SWM. FLAVURS is an 18-week parallel three-arm randomised controlled dietary intervention trial with four time points, measured at 6-weekly intervals from baseline. Low F&V consumers at risk of CVD aged 26–70 years were randomly assigned to high flavonoid (HF), low flavonoid (LF) or control group. F&V intake increased by two daily 80 g portions every 6 weeks, with either HF or LF F&V, in addition to each participant's habitual diet, while controls maintained their habitual diet. At each visit, participants completed a cognitive test battery with SWM as the primary outcome. The HF group showed significantly higher levels of urinary flavonoids than LF or controls at 12 weeks (P<0.001) as expected, but surprisingly only higher levels than LF at 18 weeks (P<0.01). The LF group showed higher levels of plasma carotenoids than the other groups at 18 weeks (P<0.001). No group differences were found for SWM overall, however, age-group sub-analyses (26–50 and 51–70 years of age) showed differences from 0 to 18 weeks for younger adults, with LF improving significantly more than the other two groups on SWM (P<0.05). As nutritional absorption is known to decrease with age, separate stepwise regressions were performed on the two age groups irrespective of dietary group, with urinary flavonoids and plasma carotenoids as predictors. For younger adults, improved SWM performance from 0 to 18 weeks was associated with higher carotenoid levels, β=0.28, t(55)=2.10, P<0.05, accounting for 7.5% of the variance, R2=0.075, F(1,54)=4.41, P=0.040. For older adults, no between-group SWM differences were found. Findings suggest that F&V-based flavonoids and carotenoids may provide benefits for cognitive function, and that carotenoids in particular may improve cognitive performance in SWM. Given that these benefits were restricted to younger adults, future work is needed to test the reliability of this finding, as well as determine the mechanisms by which age-dependent differences in F&V responsiveness occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: We investigated effects of chronic exposure (2 months) to ambient levels of particulate matter (PM) on development of protease-induced emphysema and pulmonary remodeling in mice. Methods: Balb/c mice received nasal drop of either papain or normal saline and were kept in two exposure chambers situated in an area with high traffic density. One of them received ambient air and the other had filters for PM. Results: mean concentration of PM10 was 2.68 +/- 0.38 and 33.86 +/- 2.09 mu g/m(3), respectively, in the filtered and ambient air chambers (p<0.001). After 2 months of exposure, lungs from papain-treated mice kept in the chamber with ambient air presented greater values of mean linear intercept, an increase in density of collagen fibers in alveolar septa and in expression of 8-isoprostane (p = 0.002, p < 0.05 and p = 0.002, respectively, compared to papain-treated mice kept in the chamber with filtered air). We did not observe significant differences between these two groups in density of macrophages and in amount of cells expressing matrix metalloproteinase-12. There were no significant differences in saline-treated mice kept in the two chambers. Conclusions: We conclude that exposure to urban levels of PM worsens protease-induced emphysema and increases pulmonary remodeling. We suggest that an increase in oxidative stress induced by PM exposure influences this response. These pulmonary effects of PM were observed only in mice with emphysema. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bismuth germanate glasses are interesting materials due to their physical properties and their unique structural characteristics caused by the coordination changes of bismuth and germanium atoms. Glasses of the bismuth germanate system were prepared by melting/molding method and were investigated concerning their thermal and structural properties. The structural analysis of the samples was carried out by micro-Raman and Fourier transform infrared spectroscopes. It was observed that the glass structure is formed basically by GeO(4) tetrahedral units also having the formation of the GeO(6) octahedral units. BiO(2) was considered a network former by observing the presence of octahedral BiO(6) and pyramidal BiO(3) groups in the local structure of the samples. An absorption band observed at 1103 cm(-1) in the IR spectrum of the undoped glass was attributed to the Bi-O-Ge and/or Bi-O-Bi linkage vibration. The said band shifted to lower wavenumbers after the CeO(2) addition thus reflecting changes in the glass network. Cerium oxide was an efficient oxidant agent to prevent the darkening of the glasses which was probably associated to the reduction of Bi ions. However, CeO(2) was incorporated as a local network modifier in the glass structure even at concentrations of 0.2 mol%. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4+ ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O-2(center dot-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 mu M) and Fe3+ ion (100 mu M) addition to the cell cultures had no effect, whereas Cu2+ (5.0-100 mu M) significantly increased cell death. Supplementation of the AA- and Cu2+-containing culture medium with antioxidants, such as catalase (5.0 mu M), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu2+ ions (10-50 mu M) relative to control cultures. This may imply higher activity of antioxidant enzymes C, in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) Plus Cu2+ (100 mu M) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischemia followed by reperfusion is known to negatively affect mitochondrial function by inducing a deleterious condition termed mitochondrial permeability transition. Mitochondrial permeability transition is triggered by oxidative stress, which occurs in mitochondria during ischemia-reperfusion as a result of lower antioxidant defenses and increased oxidant production. Permeability transition causes mitochondrial dysfunction and can ultimately lead to cell death. A drug able to minimize mitochondrial damage induced by ischemia-reperfusion may prove to be clinically effective. We aimed to analyze the effects of nicorandil, an ATP-sensitive potassium channel agonist and vasodilator, on mitochondrial function of rat hearts and cardiac HL-1 cells submitted to ischemia-reperfusion. Nicorandil decreased mitochondrial swelling and calcium uptake. It also decreased reactive oxygen species formation and thiobarbituric acid reactive substances levels, a lipid peroxidation biomarker. We thus confirm previous reports that nicorandil inhibits mitochondrial permeability transition and demonstrate that nicorandil inhibits this process by preventing oxidative damage and mitochondrial calcium overload induced by ischemia-reperfusion, resulting in improved cardiomyocyte viability. These results may explain the good clinical results obtained when using nicorandil in the treatment of ischemic heart disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diacetyl, like other alpha-dicarbonyl compounds, is reportedly cytotoxic and genotoxic. A food and cigarette contaminant, it is related with alcohol hepatotoxicity and lung disease. Peroxynitrite is a potent oxidant formed in vivo by the diffusion-controlled reaction of the superoxide radical anion with nitric oxide, which is able to form adducts with carbon dioxide and carbonyl compounds. Here, we investigate the nucleophilic addition of peroxynitrite to diacetyl forming acetyl radicals, whose reaction with molecular oxygen leads to acetate. Peroxynitrite is shown to react with diacetyl in phosphate buffer (bell-shaped pH profile with maximum at 7.2) at a very high rate constant (k(2) = 1.0 X 10(4) M-1 s(-1)) when compared with monocarbonyl substrates (k(2) < 10(3) M-1 s(-1)). Phosphate ions (100-500 MM) do not affect the rate of spontaneous peroxynitrite decay, but the H2PO4- anion catalyzes the nucleophilic addition of the peroxynitrite anion to diacetyl. The intermediacy of acetyl radicals is suggested by a three-line spectrum (a(N) = a(H) = 0.83 mT) obtained by EPR spin trapping of the reaction mixture with 2-methyl-2-nitrosopropane. The peroxynitrite reaction is accompanied by concentration-dependent oxygen uptake. Stoichiometric amounts of acetate from millimolar amounts of peroxynitrite and diacetyl were obtained under nonlimiting conditions of dissolved oxygen. In the presence of either L-histidine or 2`-deoxyguanosine, the peroxynitrite/diacetyl system afforded the corresponding acetylated molecules identified by HPLC-MS"". These studies provide evidence that the peroxynitrite/diacetyl reaction yields acetyl radicals and raise the hypothesis that protein and DNA nonenzymatic acetylation may occur in cells and be implicated in aging and metabolic disorders in which oxygen and nitrogen reactive species are putatively involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylglyoxal is an a-oxoaldehyde putatively produced in excess from triose phosphates, aminoacetone, and acetone in some disorders, particularly in diabetes. Here, we investigate the nucleophilic addition of ONOO(-), known as a potent oxidant and nucleophile, to methylglyoxal, yielding an acetyl radical intermediate and ultimately formate and acetate ions. The rate of ONOO(-) decay in the presence of methylglyoxal [k(2,app) = (1.0 +/- 0.1) x 10(3) M(-1) s(-1); k(2) approximate to 1.0 x 10(5) M(-1) s(-1)] at pH 7.2 and 25 degrees C was found to be faster than that reported with monocarbonyl substrates (k(2) < 10(3) M(-1) diacetyl (k(2) = 1.0 x 10(4) M(-1) s(-1)), or CO(2) (k(2) = 3-6 x 10(4) M(-1) s(-1)). The pH profile of the methylglyoxal peroxynitrite reaction describes an ascendant curve with an inflection around pH 7.2, which roughly coincides with the pK(a) values of both ONOOH and H(2)PO(4)(-) ion. Electron paramagnetic resonance spin trapping experiments with 2-methyl-2-nitrosopropane revealed concentration-dependent formation of an adduct that can be attributed to 2-methyl-2-nitrosopropane-CH(3)CO(center dot) (a(N) = 0.83 mT). Spin trapping with 3,5-dibromo-4-nitrosobenzene sulfonate gave a signal that could be assigned to a methyl radical adduct [a(N) = 1.41 mT; a(H) = 1.35 mT; a(H(m)) = 0.08 mT]. The 2-methyl-2-nitrosopropane-CH(3)CO(center dot) adduct could also be observed by replacement of ONOO(-) with H(2)O(2), although at much lower yields. Acetyl radicals could be also trapped by added L-lysine as indicated by the presence of W-acetyl-L-lysine in the spent reaction mixture. This raises the hypothesis that ONOO(-)/H(2)O(2) in the presence of methylglyoxal is endowed with the potential to acetylate proteins in post-translational processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absorption and fluorescence spectroscopy, electrochemical techniques, and semiempirical calculations were employed to characterize the multiple complexation equilibria between two polymethine cyanine dyes (IR-786 and Indocyanine green-ICG, 5) and beta-cyclodextrin (beta-CD, L), as well as the chemical reactivity of the complexed and uncomplexed species against the oxidizing agents hypochlorite (HC) and hydrogen peroxide (HP). IR-786 dimerization is favored with the increase in beta-CD concentration in the form of (SL)(2) complexes. In the case of ICG, free dimers (D) and SL complexes are favored. Both IR-786 and ICG react and discolor in the presence of HC and HP. For IR-786, the reaction with HP and HC proceeds with observed rate constants of 10(-3) and 0.28 s(-1) and second-order rate constants (k(2)) of similar to 10(-3) and 10(4) M(-1) s(-1), respectively. The intermediate species observed in the bleaching reactions of IR-786 and ICG were shown, by cyclic voltammetry and VIS absorption, to result from one electron oxidation. IR-786 complexed with beta-CD is protected against bleaching in the presence of HP and HC by factors of 20 and 4, respectively. This protection was not observed in ICG complexes. Superdelocalizability profile of both dyes and frontier orbital analysis indicates that beta-CD does not protect ICG from oxidation by HP or HC, whereas the 2:2 IR-786/beta-Cd complex is able to avoid the oxidation of IR-786. We concluded that the decrease in the chemical reactivity of the dyes against oxidant agents in the presence of beta-CD is due to the formation of (SL)(2) complexes. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ruthenium hydroxide supported on silica-coated magnetic nanoparticles was shown to be an efficient heterogeneous catalyst for the liquid-phase oxidation of a wide range of alcohols using molecular oxygen as a sole oxidant in the absence of co-catalysts or additives. The material was prepared through the loading of the amino modified support with ruthenium(III) ions from an aqueous solution of ruthenium(III) chloride followed by treatment with sodium hydroxide to form ruthenium hydroxide species. Characterizations suggest that ruthenium hydroxide is highly dispersed on the support surface, with no ruthenium containing crystalline phases being detected. Various carbonylic monoterpenoids important for fragrance and pharmaceutical industries can be obtained in good to excellent yields starting from biomass-based monoterpenic alcohols, such as isobomeol, perillyl alcohol, carveol, and citronellol. The catalyst undergoes no metal leaching and can be easily recovered by the application of an external magnet and re-used. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, cadmium and lead in the muscle, lung, liver and kidney of dolphins (Sotalia guianensis and Stenella clymene) of the Bahia coast in the northwest of Brazil were determined by graphite furnace atomic absorption spectrometry. Samples were digested using a diluted oxidant mixture (HNO(3) + H(2)O(2)) with a microwave heating program performed in five steps. The optimized temperatures and chemical modifier for the pyrolysis and atomization were 700 degrees C, 1400 degrees C and Pd plus Mg for Cd, and 900 degrees C, 1800 degrees C and NH(4)H(2)PO(4) for Pb, respectively. Characteristic masses and limits of detections (n = 20, 3 sigma) for Cd and Pb were 1.6 and 9.0 pg and 0.82 ng g(-1) and 0.50 ng g(-1), respectively. Repeatability ranged from 0.87 to 8.22% for Cd and 4.31 to 8.09% for Pb. The found concentrations presented no statistical differences at the 95% confidence level when compared with the ICP OES methods. Addition and recovery tests were also performed and the results ranged between 87 and 112% for both elements. Samples of cetacean Dolphinidae (S. guianensis and S. clymene) were analyzed, and the higher concentrations ranged from 0.09 to 46.2 mu g g(-1) for Cd and 0.04 to 0.47 mu g g(-1) for Pb in liver, and from 0.133 to 277 mu g g(-1) for Cd in the kidney. (C) 2010 Elsevier By. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron supplementation in hemodialysis patients is fundamental to erythropoiesis, but may cause harmful effects. We measured oxidative stress using labile plasma iron (LPI) after parenteral iron replacement in chronic hemodialysis patients. Intravenous iron saccharate (100 mg) was administered in patients undergoing chronic hemodialysis (N = 20). LPI was measured by an oxidant-sensitive fluorescent probe at the beginning of dialysis session (T0), at 10 min (T1), 20 min (T2), and 30 min (T3) after the infusion of iron and at the subsequent session; P < 0.05 was significant. The LPI values were significantly raised according to the time of administration and were transitory: -0.02 +/- 0.20 mu mol/L at the beginning of the first session, 0.01 +/- 0.26 mu mol/L at T0, 0.03 +/- 0.23 mu mol/L at T1, 0.09 +/- 0.28 mmol/L at T2, 0.18 +/- 0.52 mmol/L at T3, and -0.02 +/- 0.16 mmol/L (P = 0.001 to 0.041) at the beginning of the second session. The LPI level in patients without iron supplementation was -0.06 +/- 0.16 mmol/L. Correlations of LPI according to time were T1, T2, and T3 vs. serum iron (P = 0.01, P = 0.007, and P = 0.0025, respectively), and T2 and T3 vs. transferrin saturation (P = 0.001 and P = 0.0003, respectively). LPI generation after intravenous saccharate administration is time-dependent and transitorily detected during hemodialysis. The LPI increment had a positive correlation to iron and transferrin saturation.