925 resultados para OPTICAL PERFORMANCE MONITORING
Resumo:
Fiber reinforced polymer (FRP) composite materials are making an entry into the construction market in both buildings and pavements. The application to pavements so far has come in the form of joint reinforcement (dowels and tie bars). FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy-coated steel dowels for pavements. Iowa State University has completed a large amount of laboratory research to determine the diameter, spacing, and durability of FRP dowels. This report documents the performance of elliptical FRP dowels installed in a field situation. Ten joints were monitored in three consecutive test sections, for each of three dowel spacings (10, 12, and 15 inches) including one instrumented dowel in each test section. The modulus of dowel bar support was determined using falling weight deflectometer (FWD) testing and a loaded crawl truck. FWD testing was also used to determine load transfer efficiency across the joint. The long-term performance and durability of the concrete was also evaluated by monitoring faulting and joint opening measurements and performing visual distress surveys at each joint. This report also contains similar information for standard round, medium elliptical, and heavy elliptical steel dowels in a portion of the same highway. In addition, this report provides a summary of theoretical analysis used to evaluate joint differential deflection for the dowels.
Resumo:
Voriconazole (VRC) is a broad-spectrum antifungal triazole with nonlinear pharmacokinetics. The utility of measurement of voriconazole blood levels for optimizing therapy is a matter of debate. Available high-performance liquid chromatography (HPLC) and bioassay methods are technically complex, time-consuming, or have a narrow analytical range. Objectives of the present study were to develop new, simple analytical methods and to assess variability of voriconazole blood levels in patients with invasive mycoses. Acetonitrile precipitation, reverse-phase separation, and UV detection were used for HPLC. A voriconazole-hypersusceptible Candida albicans mutant lacking multidrug efflux transporters (cdr1Delta/cdr1Delta, cdr2Delta/cdr2Delta, flu1Delta/flu1Delta, and mdr1Delta/mdr1Delta) and calcineurin subunit A (cnaDelta/cnaDelta) was used for bioassay. Mean intra-/interrun accuracies over the VRC concentration range from 0.25 to 16 mg/liter were 93.7% +/- 5.0%/96.5% +/- 2.4% (HPLC) and 94.9% +/- 6.1%/94.7% +/- 3.3% (bioassay). Mean intra-/interrun coefficients of variation were 5.2% +/- 1.5%/5.4% +/- 0.9% and 6.5% +/- 2.5%/4.0% +/- 1.6% for HPLC and bioassay, respectively. The coefficient of concordance between HPLC and bioassay was 0.96. Sequential measurements in 10 patients with invasive mycoses showed important inter- and intraindividual variations of estimated voriconazole area under the concentration-time curve (AUC): median, 43.9 mg x h/liter (range, 12.9 to 71.1) on the first and 27.4 mg x h/liter (range, 2.9 to 93.1) on the last day of therapy. During therapy, AUC decreased in five patients, increased in three, and remained unchanged in two. A toxic encephalopathy probably related to the increase of the VRC AUC (from 71.1 to 93.1 mg x h/liter) was observed. The VRC AUC decreased (from 12.9 to 2.9 mg x h/liter) in a patient with persistent signs of invasive aspergillosis. These preliminary observations suggest that voriconazole over- or underexposure resulting from variability of blood levels might have clinical implications. Simple HPLC and bioassay methods offer new tools for monitoring voriconazole therapy.
Resumo:
Tumor Endothelial Marker-1 (TEM1/CD248) is a tumor vascular marker with high therapeutic and diagnostic potentials. Immuno-imaging with TEM1-specific antibodies can help to detect cancerous lesions, monitor tumor responses, and select patients that are most likely to benefit from TEM1-targeted therapies. In particular, near infrared(NIR) optical imaging with biomarker-specific antibodies can provide real-time, tomographic information without exposing the subjects to radioactivity. To maximize the theranostic potential of TEM1, we developed a panel of all human, multivalent Fc-fusion proteins based on a previously identified single chain antibody (scFv78) that recognizes both human and mouse TEM1. By characterizing avidity, stability, and pharmacokinectics, we identified one fusion protein, 78Fc, with desirable characteristics for immuno-imaging applications. The biodistribution of radiolabeled 78Fc showed that this antibody had minimal binding to normal organs, which have low expression of TEM1. Next, we developed a 78Fc-based tracer and tested its performance in different TEM1-expressing mouse models. The NIR imaging and tomography results suggest that the 78Fc-NIR tracer performs well in distinguishing mouse- or human-TEM1 expressing tumor grafts from normal organs and control grafts in vivo. From these results we conclude that further development and optimization of 78Fc as a TEM1-targeted imaging agent for use in clinical settings is warranted.
Resumo:
This report is a well illustrated and practical Guide intended to aid engineers and engineering technicians in monitoring, maintaining, and protecting bridge waterways so as to mitigate or prevent scour from adversely affecting the structural performance of bridge abutments, piers, and approach road embankments. Described and illustrated here are the scour processes affecting the stability of these components of bridge waterways. Also described and illustrated are methods for monitoring waterways, and the various methods for repairing scour damage and protecting bridge waterways against scour. The Guide focuses on smaller bridges, especially those in Iowa. Scour processes at small bridges are complicated by the close proximity of abutments, piers, and waterway banks, such that scour processes interact in ways difficult to predict and for which reliable design relationships do not exist. Additionally, blockage by woody debris or by ice, along with changes in approach channel alignment, can have greater effects on pier and abutment scour for smaller bridges. These considerations tend to cause greater reliance on monitoring for smaller bridges. The Guide is intended to augment and support, as a source of information, existing procedures for monitoring bridge waterways. It also may prompt some adjustments of existing forms and reports used for bridge monitoring. In accord with increasing emphasis on effective management of public facilities like bridges, the Guide ventures to include an example report format for quantitative risk assessment applied to bridge waterways. Quantitative risk assessment is useful when many bridges have to be evaluated for scour risk and damage, and priorities need to be determined for repair and protection work. Such risk assessment aids comparison of bridges at risk. It is expected that bridge inspectors will implement the Guide as a concise, handy reference available back at the office. The Guide also likely may be implemented as an educational primer for new inspectors who have yet to become acquainted with waterway scour. Additionally, the Guide may be implemented as a part of process to check whether existing bridge-inspection forms or reports adequately encompass bridge-waterway scour.
Resumo:
The objective of the study presented in this report was to document the launch of the Iowa River Bridge and to monitor and evaluate the structural performance of the bridge superstructure and substructure during the launch. The Iowa Department of Transportation used an incremental launching method, which is relatively unique for steel I-girder bridges, to construct the Iowa River Bridge over an environmentally sensitive river valley in central Iowa. The bridge was designed as two separate roadways consisting of four steel plate girders each that are approximately 11 ft deep and span approximately 301 ft each over five spans. The concrete bridge deck was not placed until after both roadways had been launched. One of the most significant monitoring and evaluation observations related to the superstructure was that the bottom flange (and associated web region) was subjected to extremely large stresses during the crossing of launch rollers. Regarding the substructure performance, the column stresses did not exceed reasonable design limits during the daylong launches. The scope of the study did not allow adequate quantification of the measured applied launch forces at the piers. Future proposed esearch should provide an opportunity to address this. The overall experimental performance of the bridge during the launch was compared with the predicted design performance. In general, the substructure design, girder contact stress, and total launching force assumptions correlated well with the experimental results. The design assumptions for total axial force in crossframe members, on the other hand, differed from the experimental results by as much as 300%.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.
Resumo:
BACKGROUND: Because ambulatory blood pressure monitoring (ABPM) is not available everywhere, the objective of the study was to determine whether nurse-measured blood pressure could be an acceptable substitute to ABPM. METHODS: We analyzed the data of 2385 consecutive patients referred to our hypertension clinic for the performance of ABPM. Before ambulatory monitoring was performed, a nurse-measured BP was obtained three times using a Y-tube connecting the sphygmomanometer and the recorder. We compared the mean value of the three nurse-measured blood pressures with that of the 12h daytime ambulatory monitoring, considered as the reference. RESULTS: The difference between the nurse-measured and the ambulatory blood pressure was small but statistically significant, indicating that nurse-measured blood pressure tends to overestimate both diastolic and systolic blood pressure. The difference between the nurse blood pressure and ABPM was greater among treated hypertensive patients than untreated patients. To diagnose hypertension, defined as a blood pressure of over 140/90mmHg by ABPM, the positive predictive value of the nurse blood pressure was 0.81 and the negative predictive value 0.63. However, these predictive values could be improved with less stringent cut-off values of blood pressure. Thus, for a diastolic blood pressure above 100mmHg, the positive predictive value of nurse blood pressure was 0.55 and the negative predictive value 0.91. These figures were relatively similar for previously treated and untreated patients. CONCLUSION: Nurse blood pressure is less accurate than ABPM in diagnosing hypertension, defined as a blood pressure of over 140/90mmHg. It could, however, be an acceptable substitute, especially to exclude people who do not need to be treated, in situations where lower resources require a less rigorous definition of hypertension.
Resumo:
The purpose of this document is to provide guidelines for the annual monitoring and evaluation of Iowa’s adult literacy funded local programs. Section 224(b)(3) of the Adult Education and Family Literacy Act (AEFLA) states that the State Education Agency (SEA) will provide “a description of how the eligible agency [Iowa Department of Education] will evaluate annually the effectiveness of the adult education and literacy activities based on the performance measures described in section 212.” In compliance with that mandate, the following describes the Iowa Department of Education’s procedures for local adult literacy program evaluation strategies.
Resumo:
Objective Analyzing the policy transfer of directly observed treatment of tuberculosis from the perspective of nursing. Method This is a descriptive study with qualitative approach, which had 10 nurses of the Family Health Strategy in São Paulo as subjects. The interviews were carried out between May and June 2013, and were adopted the technique of thematic content analysis and the referential of policy transfer. Results On the signification of this treatment, are related the senses of disciplinary monitoring, the bond and approximation to the context of patients’ lives. Operationally, nurses, community health agents and nursing technicians stand out as agents of implementation of this policy, developing multiple actions of user embracement. The nurse is evidenced as an educator in health, leader in the family health team, and capable of creating emotional bond with users. Conclusion It was found that the innovations proposed in the treatment are incipient in the daily work of nurses.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.
Resumo:
There is increasing evidence that the clinical efficacy of tamoxifen, the first and most widely used targeted therapy for estrogen-sensitive breast cancer, depends on the formation of the active metabolites 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen). Large inter-individual variability in endoxifen plasma concentrations has been observed and related both to genetic and environmental (i.e. drug-induced) factors altering CYP450s metabolizing enzymes activity. In this context, we have developed an ultra performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) requiring 100 μL of plasma for the quantification of tamoxifen and three of its major metabolites in breast cancer patients. Plasma is purified by a combination of protein precipitation, evaporation at room temperature under nitrogen, and reconstitution in methanol/20 mM ammonium formate 1:1 (v/v), adjusted to pH 2.9 with formic acid. Reverse-phase chromatographic separation of tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen is performed within 13 min using elution with a gradient of 10 mM ammonium formate and acetonitrile, both containing 0.1% formic acid. Analytes quantification, using matrix-matched calibration samples spiked with their respective deuterated internal standards, is performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of relative matrix effects variability, as well as tamoxifen and metabolites short-term stability in plasma and whole blood. The method is precise (inter-day CV%: 2.5-7.8%), accurate (-1.4 to +5.8%) and sensitive (lower limits of quantification comprised between 0.4 and 2.0 ng/mL). Application of this method to patients' samples has made possible the identification of two further metabolites, 4'-hydroxy-tamoxifen and 4'-hydroxy-N-desmethyl-tamoxifen, described for the first time in breast cancer patients. This UPLC-MS/MS assay is currently applied for monitoring plasma levels of tamoxifen and its metabolites in breast cancer patients within the frame of a clinical trial aiming to assess the impact of dose increase on tamoxifen and endoxifen exposure.
Resumo:
Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.
Resumo:
Background¦Erythrocyte MCV might be used as an inexpensive marker to predict and¦optimize the efficacy and tolerability of thiopurine therapy in IBD patients.¦Aim and methods¦This retrospective observational study aimed to assess the monitoring¦performances of MCV in patients under 3 months or more thiopurine treatment followed up¦in the Swiss IBD Cohort Study. All available MCV, white blood cells (WBC) and 6¦thioguanine nucleotide (6TGN) measurements, among others, were recorded. An IBD¦"flare" was defined as a composite outcome encompassing treatment change,¦colonoscopy, histology, CT scan or MRI reports showing active IBD lesions, occurrence of¦intestinal surgery and IBD-related hospitalisations. Whether MCV measurements predicted¦efficacy of thiopurine treatment was investigated by assessing the statistical association¦between the occurrence of IBD "flares", and the current or recent MCV values, taking into¦account the patient clustering and longitudinal aspect of data.¦Results¦140 patients (77 women), mean age 38 years (17-74), 104 diagnosed with¦Crohn's disease, 36 with ulcerative colitis, mean disease duration 8 years (0.25-36),¦receiving either azathioprine (n=125) or 6-mercaptopurine (n=15) were included, most of¦them over 3-year follow up.¦Thiopurines increased mean patient MCV by an average 5.8±5.2 fL, while¦patientsfluctuated by ±4.3 fL around their individual mean (p<0.001). They decreased¦WBC by an average of 2.4+/- 2.6 G/L (p<0.001).¦Significant associations were observed between the probability of flare occurrence and low¦current MVC (p=0.017) or high current WBC (p=0.009) and, with a relative risk of 3.7% for¦every fL of MCV decrease or 8% for every G/L of WBC increase. Both markers revealed¦some memory effect.¦Despite this, the performance of MCV and WBC to predict IBD "flare" remained rather¦limited, as it is less accurate than the 6-TGN-level , although only determined in a¦subgroup of patients in this study.¦Conclusion¦MCV and WBC deserve to be observed to check and monitor therapeutic¦exposure to thiopurine agents in IBD patients. Unfortunately, their predictive performance¦precludes their privileged use for optimization of therapy. Further prospective studies¦should suitably include the systematic measurement of metabolite concentration.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.