805 resultados para Non-insulin-dependent diabetes - Etiology
Resumo:
Background: Previous research has reported both a moderate degree of comorbidity between cannabis dependence and major depressive disorder (MDD) and that early-onset cannabis use is associated with increased risks for MDD. Objective: To examine whether associations between both lifetime cannabis dependence and early cannabis use and measures of MDD, suicidal ideation, and suicide attempt persist after controlling for genetic and/or shared environmental influences. Design: Cross-sectional survey of twin pairs discordant for lifetime cannabis dependence and those discordant for early cannabis use. Setting: General population sample of twins (median age, 30 years). Participants: Two hundred seventy-seven same-sex twin pairs discordant for cannabis dependence and 311 pairs discordant for early-onset cannabis use (before age 17 years). Main Outcome Measures: Self-report measures of DSM-IV-defined lifetime MDD, suicidal ideation, and suicide attempt. Results: Individuals who were cannabis dependent had odds of suicidal ideation and suicide attempt that were 2.5 to 2.9 times higher than those of their non-cannabis-dependent co-twin. Additionally, cannabis dependence was associated with elevated risks of MDD in dizygotic but not in monozygotic twins. Those who initiated cannabis use before age 17 years had elevated rates of subsequent suicide attempt (odds ratio, 3.5 [95% confidence interval, 1.4-8.6]) but not of MDD or suicidal ideation. Early MDD and suicidal ideation were significantly associated with subsequent risks of cannabis dependence in discordant dizygotic pairs but not in discordant monozygotic pairs. Conclusions: Comorbidity between cannabis dependence and MDD likely arises through shared genetic and environmental vulnerabilities predisposing to both outcomes. In contrast, associations between cannabis dependence and suicidal behaviors cannot be entirely explained by common predisposing genetic and/or shared environmental predispositions. Previously reported associations between early-onset cannabis use and subsequent MDD likely reflect shared genetic and environmental vulnerabilities, although it remains possible that early-onset cannabis use may predispose to suicide attempt.
Resumo:
Postprandial hyperglycemia is implicated as a risk factor predisposing to vascular complications. This study was designed to assess recurrent short-term increases in glucose on markers of renal fibrogenesis. Human renal cortical fibroblasts were exposed to fluctuating short-term (2 h) increases to 15 mM D-glucose, three times a day over 72 h, on a background of 5 mM D-glucose. To determine whether observed changes were due to fluctuating osmolality, identical experiments were undertaken with cells exposed to L-glucose. Parallel experiments were performed in cells exposed to 5 mM D-glucose and constant exposure to either 15 or 7.5 mM D-glucose. Fluctuating D-glucose increased extracellular matrix, as measured by proline incorporation ( P < 0.05), collagen IV ( P < 0.005), and fibronectin production ( P < 0.001), in association with increased tissue inhibitor of matrix metalloproteinase (MMP) ( P < 0.05). Sustained exposure to 15 mM D-glucose increased fibronectin ( P < 0.001), in association with increased MMP-2 ( P = 0.01) and MMP-9 activity ( P < 0.05), suggestive of a protective effect on collagen matrix accumulation. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA was increased after short-term (90 min) exposure to 15 mM glucose (P < 0.05) and after 24-h exposure to 7.5 mM ? ( P < 0.05). Normalization of TGF-beta(1) secretion occurred within 48 h of constant exposure to an elevated glucose. Fluctuating L-glucose also induced TGF-beta(1) mRNA and a profibrotic profile, however, to a lesser extent than observed with exposure to fluctuating D-glucose. The results suggest that exposure to fluctuating glucose concentrations increases renal interstitial fibrosis compared with stable elevations in D-glucose. The effects are, in part, due to the inherent osmotic changes.
Resumo:
A disappointing feature of conventional methods for detecting association between DNA variation and a phenotype of interest is that they tell us little about the hidden pattern of linkage disequilibrium (LD) with the functional variant that is actually responsible for the association. This limitation applies to case-control studies and also to the transmission/disequilibrium test (TDT) and other family-based association methods. Here we present a fresh perspective on genetic association based on two novel concepts called 'LD squares' and 'equi-risk alleles'. These describe and characterize the different patterns of gametic LD which underlie genetic association. These concepts lead to a general principle - the Equi-Risk Allele Segregation Principle - which captures the way in which underlying LD patterns affect the transmission patterns of genetic variants associated with a phenotype. This provides a basis for distinguishing the hidden LD patterns and might help to locate the functional variants responsible for the association.
Resumo:
OBJECTIVE - We examined the associations of physical activity with fasting plasma glucose (FPG) and with 2-h postload plasma glucose (2-h PG) in men and women with low, moderate, and high waist circumference. RESEARCH DESIGN AND METHODS - The Australian Diabetes, Obesity and Lifestyle (AusDiab) study provided data on a population-based cross-sectional sample of 4,108 men and 5,106 women aged >= 25 years without known diabetes or health conditions that could affect physical activity. FPG and 2-h PG were obtained from an oral glucose tolerance test. Self-reported physical activity level was defined according to the current public health guidelines as active (>= 150 min/week across five or more sessions) or inactive (< 150 min/week and/or less than five sessions). Sex-specific quintiles of physical activity time were used to ascertain dose response. RESULTS - Being physically active and total physical activity time were independently and negatively associated with 2-h PG. When physical activity level was considered within each waist circumference category, 2-h PG was significantly lower in active high-waist circumference women (beta-0.30 [95% CI -0.59 to -0.01], P = 0.044) and active low-waist circumference men(beta-0.25 [-0.49 to -0.02],P = 0.036) compared with their inactive counterparts. Considered across physical activity and waist circumference categories, 2-h PG levels were not significantly different between active moderate-waist circumference participants and active low-waist circumference participants. Associations between physical activity and FPG were nonsignificant. CONCLUSIONS - There are important differences between 2-h PG and FPG related to physical activity. It appears that 2-h PG is more sensitive to the beneficial effects of physical activity, and these benefits occur across the waist circumference spectrum.
Resumo:
Ribozymes are short strands of RNA that possess a huge potential as biological tools for studying gene expression and as therapeutic agents to down-regulate undesirable gene expression. Successful application of ribozymes requires delivery to the target site in sufficient amounts for an adequate duration. However, due to their large size and polyanionic character ribozymes are not amenable to transport across biological membranes. In this study a chemically modified ribozyme with enhanced biological stability, targeted against the EGFR mRNA has been evaluated for cellular delivery to cultured glial and neuronal cells with a view to developing treatments for brain tumours. Cellular delivery of free ribozyme was characterised in cultured glial and neuronal cells from the human and rat. Delivery was very limited and time dependent with no consistent difference observed between glial and neuronal cells in both species. Cellular association was largely temperature and energy-dependent with a small component of non-energy dependent association. Further studies showed that ribozyme cellular association was inhibited with self and cross competition with nucleic and non-nucleic acid polyanions indicating the presence of cell surface ribozyme-binding molecules. Trypsin washing experiments further implied that the ribozyme binding surface molecules were protein by nature. Dependence of cellular association on pH indicated that interaction of ribozyme with cell surface molecules was based on ionic interactions. Fluoresence studies indicated that, post cell association, ribozymes were sequestered in sub-cellular vesicles. South-Western blots identified several cell surface proteins which bind to ribozymes and could facilitate cellular association. The limited cellular association observed with free ribozyme required the development and evaluation of polylactide-co-glycolide microspheres incorporating ribozyme for enhanced cellular delivery. Characterisation of microsphere mediated delivery of ribozyme in cultured glial and neuronal cells showed that association increased by 18 to 27-fold in all cell types with no differences observed between cell lines and species. Microsphere mediated delivery was temperature and energy dependent and independent of pH. In order to assess the potential of PLGA micro spheres for the CNS delivery of ribozyme the distribution of ribozyme entrapping microspheres was investigated in rat CNS after intracerebroventricular injection. Distribution studies demonstrated that after 24 hours there was no free ribozyme present in the brain parenchyma, however microsphere entrapped ribozyme was found in the CNS. Microspheres remained in the ventricular system after deposition and passed from the lateral ventricles to the third and fourth ventricle and in the subarachnoid space. Investigation of the influence of microsphere size on the distribution in CNS demonstrated that particles up to 2.5 and O.5f.lm remained in the ventricles around the choroid plexus and ependymal lining.
Resumo:
NMF induces the terminal differentiation or acquisition of more benign characteristics in certain malignant cells in vitro and has good antitumour activity against murine tumours in vivo. This study was concerned with a comparison of the mechanism of antitumour activity of NMF in vitro and in vivo against the murine TLX5 lymphoma, which is sensitive to NMF in vivo. TLX5 cells incubated continuously with NMF in vitro showed a concentration and time dependent decrease in cell growth rate, which was associated with an increase in membrane permeability, a decrease in cell size and at the higher NMF concentrations, cell death. Analysis of the cell cycle after incubation with NMF indicated an early G1 phase arrest. TLX5 cells were incubated with NMF and washed free of the drug. Analysis of clonogenicity and tumourigenicity showed that all viable cells retained their proliferative potential and malignancy. Therefore, TLX5 cells exposed to NMF in vitro are not terminally differentiated, but reside in a quiescent substate which was reversed on drug removal. The intracellular GSH levels of TLX5 cells was decreased in a concentration and time dependent fashion by NMF. GSH depletion of TLX5 cells was not however a prerequisite for growth arrest, unlike the reported data for human colon carcinoma cell lines. A single administration of NMF caused a dose dependent regression of the TLX5 lymphoma in tumour bearing mice. Cell death occurred by apoptosis and necrosis. The antitumour activity of NMF was dependent on formyl C-H bond fission, with the parent drug or metabolites reaching all parts of the tumour 4h after dosing. There was a non-dose dependent increase in the S phase population, which was due to an increase in DNA synthesis, 24h after administration of NMF. NMF administration caused a decrease in GSH levels of the TLX5 lymphoma, which did not correlate with the antitumour response. However, the GSH depleting agent, BSO, marginally increased the antitumour activity of NMF.
Resumo:
Aims: Humans with inactivating mutations in peroxisomal proliferators activated receptor gamma (PPAR?) typically develop a complex metabolic syndrome characterized by insulin resistance, diabetes, lipodystrophy, hypertension, and dyslipidaemia which is likely to increase their cardiovascular risk. Despite evidence that the activation of PPAR? may prevent cardiac fibrosis and hypertrophy, recent evidence has suggested that pharmacological activation of PPAR? causes increased cardiovascular mortality. In this study, we investigated the effects of defective PPAR? function on the development of cardiac fibrosis and hypertrophy in a murine model carrying a human dominant-negative mutation in PPAR?. Methods and results: Mice with a dominant-negative point mutation in PPAR? (P465L) and their wild-type (WT) littermates were treated with either subcutaneous angiotensin II (AngII) infusion or saline for 2 weeks. Heterozygous P465L and WT mice developed a similar increase in systolic blood pressure, but the mutant mice developed significantly more severe cardiac fibrosis to AngII that correlated with increased expression of profibrotic genes. Both groups similarly increased the heart weight to body weight ratio compared with saline-treated controls. There were no differences in fibrosis between saline-treated WT and P465L mice. Conclusion: These results show synergistic pathogenic effects between the presence of defective PPAR? and AngII-induced hypertension and suggest that patients with PPAR? mutation and hypertension may need more aggressive therapeutic measures to reduce the risk of accelerated cardiac fibrosis. © The Author 2009.
Resumo:
Bacterial colonization of the upper respiratory tract is the first step in the pathogenesis of nontypeable Haemophilus influenzae (NTHi) disease. Examination of the determinants of NTHi colonization process has been hampered by the lack of an appropriate animal model. To address this, we have developed a model of NTHi colonization in adult rhesus macaques that involves intranasal inoculation of 1x105 CFU and results in persistent colonization of the upper respiratory tract for at least three weeks with no signs of disease, mimicking asymptomatic colonization of humans. Using this model, we assessed the contributions to colonization of the HMW1 and HMW2 adhesive proteins. In competition experiments, the parent strain expressing both HMW1 and HMW2 was able to efficiently out-compete an isogenic mutant strain expressing neither HMW1 nor HMW2. In experiments involving inoculation of single isogenic derivatives of NTHi strain 12, the strains expressing HMW1 or HMW2 or both were able to colonize efficiently, while the strain expressing neither HMW1 nor HMW2 colonized inefficiently. Furthermore, colonization resulted in antibody production against HMW1 and HMW2 in one-third of the animals, demonstrating that colonization can be an immunizing event. In conclusion, we have established that NTHi is capable of colonizing the upper respiratory tract of rhesus macaques, in some cases associated with stimulation of an immune response. The HMW1 and HMW2 adhesive proteins play a major role in the process of colonization.
After establishing that the HMW1 and HMW2 proteins are colonization factors we further investigated the determinants of HMW1 function. HMW1 is encoded in the same genetic locus as two other proteins, HMW1B and HMW1C, with which HMW1 must interact in order to be functional. Interaction with HMW1C in the cytoplasm results in the glycosylation of HMW1. By employing homologues of HMW1C that glycosylate HMW1 in slightly different patterns we show that the pattern of modification is critical to HMW1 function. Structural analysis showed a change in protein structure when the pattern of HMW1 modification differed. We also identified two specific sites which must be glycosylated for HMW1 to function properly. These point mutations did not have a significant effect on protein structure, suggesting that glycosylation at those specific sites is instead necessary for interaction of HMW1 with its receptor. HMW1B is an outer membrane pore through which HMW1 is transported to reach the bacterial cell surface. We observed that HMW1 isolated from the cytoplasm has a different structure than HMW1 isolated from the bacterial cell surface. By forcing HMW1 to be secreted in a non-HMW1B dependent manner, we show that secretion alone is not sufficient for HMW1 to obtain a functional structure. This leads us to hypothesize that there is something specific in the interaction between HMW1 and HMW1B that aids in proper HMW1 folding.
The NTHi HMW1C glycosyltransferase mediates unconventional N-linked glycosylation of HMW1. In this system, HMW1 is modified in the cytoplasm by sequential transfer of hexose residues. To determine if this mechanism of N-linked glycosylation is employed by species other than NTHi, we examined Kingella kingae and Aggregatibacter aphrophilus homologues of HMW1C. We found both homologues to be functional glycosyltransferases and identified their substrates as the K. kingae Knh and the A. aphrophilus EmaA trimeric autotransporter proteins. LC-MS/MS analysis revealed multiple sites of N-linked glycosylation on Knh and EmaA. Without glycosylation, Knh and EmaA failed to facilitate wild type levels of bacterial autoaggregation or adherence to human epithelial cells, establishing that glycosylation is essential for proper protein function.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.
Resumo:
In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.
Resumo:
Non Alcoholic Fatty Liver Disease (NAFLD) is a condition that is frequently seen but seldom investigated. Until recently, NAFLD was considered benign, self-limiting and unworthy of further investigation. This opinion is based on retrospective studies with relatively small numbers and scant follow-up of histology data. (1) The prevalence for adults, in the USA is, 30%, and NAFLD is recognized as a common and increasing form of liver disease in the paediatric population (1). Australian data, from New South Wales, suggests the prevalence of NAFLD in “healthy” 15 year olds as being 10%.(2) Non-alcoholic fatty liver disease is a condition where fat progressively invades the liver parenchyma. The degree of infiltration ranges from simple steatosis (fat only) to steatohepatitis (fat and inflammation) steatohepatitis plus fibrosis (fat, inflammation and fibrosis) to cirrhosis (replacement of liver texture by scarred, fibrotic and non functioning tissue).Non-alcoholic fatty liver is diagnosed by exclusion rather than inclusion. None of the currently available diagnostic techniques -liver biopsy, liver function tests (LFT) or Imaging; ultrasound, Computerised tomography (CT) or Magnetic Resonance Imaging (MRI) are specific for non-alcoholic fatty liver. An association exists between NAFLD, Non Alcoholic Steatosis Hepatitis (NASH) and irreversible liver damage, cirrhosis and hepatoma. However, a more pervasive aspect of NAFLD is the association with Metabolic Syndrome. This Syndrome is categorised by increased insulin resistance (IR) and NAFLD is thought to be the hepatic representation. Those with NAFLD have an increased risk of death (3) and it is an independent predictor of atherosclerosis and cardiovascular disease (1). Liver biopsy is considered the gold standard for diagnosis, (4), and grading and staging, of non-alcoholic fatty liver disease. Fatty-liver is diagnosed when there is macrovesicular steatosis with displacement of the nucleus to the edge of the cell and at least 5% of the hepatocytes are seen to contain fat (4).Steatosis represents fat accumulation in liver tissue without inflammation. However, it is only called non-alcoholic fatty liver disease when alcohol - >20gms-30gms per day (5), has been excluded from the diet. Both non-alcoholic and alcoholic fatty liver are identical on histology. (4).LFT’s are indicative, not diagnostic. They indicate that a condition may be present but they are unable to diagnosis what the condition is. When a patient presents with raised fasting blood glucose, low HDL (high density lipoprotein), and elevated fasting triacylglycerols they are likely to have NAFLD. (6) Of the imaging techniques MRI is the least variable and the most reproducible. With CT scanning liver fat content can be semi quantitatively estimated. With increasing hepatic steatosis, liver attenuation values decrease by 1.6 Hounsfield units for every milligram of triglyceride deposited per gram of liver tissue (7). Ultrasound permits early detection of fatty liver, often in the preclinical stages before symptoms are present and serum alterations occur. Earlier, accurate reporting of this condition will allow appropriate intervention resulting in better patient health outcomes. References 1. Chalasami N. Does fat alone cause significant liver disease: It remains unclear whether simple steatosis is truly benign. American Gastroenterological Association Perspectives, February/March 2008 www.gastro.org/wmspage.cfm?parm1=5097 Viewed 20th October, 2008 2. Booth, M. George, J.Denney-Wilson, E: The population prevalence of adverse concentrations with adiposity of liver tests among Australian adolescents. Journal of Paediatrics and Child Health.2008 November 3. Catalano, D, Trovato, GM, Martines, GF, Randazzo, M, Tonzuso, A. Bright liver, body composition and insulin resistance changes with nutritional intervention: a follow-up study .Liver Int.2008; February 1280-9 4. Choudhury, J, Sanysl, A. Clinical aspects of Fatty Liver Disease. Semin in Liver Dis. 2004:24 (4):349-62 5. Dionysus Study Group. Drinking factors as cofactors of risk for alcohol induced liver change. Gut. 1997; 41 845-50 6. Preiss, D, Sattar, N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci.2008; 115 141-50 7. American Gastroenterological Association. Technical review on nonalcoholic fatty liver disease. Gastroenterology.2002; 123: 1705-25
Resumo:
BACKGROUND: Adherence to medicines is important in subjects with diabetes, as nonadherence is associated with an increased risk of morbidity and mortality. However, it is not clear whether there is an association between adherence to medicines and glycaemic control, as not all studies have shown this. One of the reasons for this discrepancy may be that, although there is a standard measure of glycaemic control i.e. HbA1c, there is no standard measure of adherence to medicines. Adherence to medicines can be measured either qualitatively by Morisky or non-Morisky methods or quantitatively using the medicines possession ratio (MPR). AIMS OF THE REVIEW: The aims of this literature review are (1) to determine whether there is an association between adherence to anti-diabetes medicines and glycaemic control, and (2) whether any such association is dependent on how adherence is measured. Methods A literature search of Medline, CINAHL and the Internet (Google) was undertaken with search terms; 'diabetes' with 'adherence' (or compliance, concordance, persistence, continuation) with 'HbA1c' (or glycaemic control). RESULTS: Twenty-three studies were included; 10 qualitative and 12 quantitative studies, and one study using both methods. For the qualitative methods measurements of adherence to anti-diabetes medicines (non-Morisky and Morisky), eight out of ten studies show an association with HbA1c. Nine of ten studies using the quantitative MPR, and two studies using MPR for insulin only, have also shown an association between adherence to anti-diabetes medicines and HbA1c. However, the one study that used both Morisky and MPR did not show an association. Three of the four studies that did not show a relationship, did not use a range of HbA1c values in their regression analysis. The other study that did not show a relationship was specifically in a low income population. CONCLUSIONS: Most studies show an association between adherence to anti-diabetes medicines and HbA1c levels, and this seems to be independent of method used to measure adherence. However, to show an association it is necessary to have a range of HbA1c values. Also, the association is not always apparent in low income populations.
Resumo:
Compared to other species insulin dysregulation in equids is poorly understood. Hyperinsulinemia causes laminitis, a significant and often lethal disease affecting the pedal bone/hoof wall attachment site. Until recently, hyperinsulinemia has been considered a counter-regulatory response to insulin resistance (IR), but there is growing evidence to support a gastrointestinal etiology. Incretin hormones released from the proximal intestine, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide, augment insulin secretion in several species, but require investigation in horses. This study investigated peripheral and gut-derived factors impacting insulin secretion by comparing the response to intravenous (IV) and oral D-glucose. Oral and IV tests were performed in 22 ponies previously shown to be insulin dysregulated, of which only 15 were classified as IR (IV test). In a more detailed study, nine different ponies received four treatments: D-glucose orally, D-glucose IV, oats and Workhorse-mix. Insulin, glucose and incretin concentrations were measured before and after each treatment. All nine ponies showed similar IV responses, but five were markedly hyper-responsive to oral D-glucose and four were not. Insulin responsiveness to oral D-glucose was strongly associated with blood glucose concentrations and oral glucose bioavailability, presumably driven by glucose absorption/distribution, as there was no difference in glucose clearance rates. Insulin was also positively associated with active GLP-1 following D-glucose and grain. This study has confirmed a functional enteroinsular axis in ponies which likely contributes to insulin dysregulation that may predispose them to laminitis. Further, IV tests for IR are not reliable predictors of the oral response to dietary non-structural carbohydrate.
Resumo:
The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.