919 resultados para Network-on-Chip (NoC)
Resumo:
A microfluidic Organ-on-Chip has been developed for monitoring the epithelial cells monolayer. Equivalent circuit Model was used to determine the electrical properties from the impedance spectra of the epithelial cells monolayer. Black platinum on platinum electrodes was electrochemically deposited onto the surface of electrodes to reduce the influence of the electrical double layer on the impedance measurements. Measurements of impedance with an Impedance Analyzer were done to validate the equivalent circuit model and the decrease of the double layer effect. A Lock-in Amplifier was designed to measure the impedance.
Resumo:
In questo elaborato verranno presentati le finalità, gli sviluppi e le prospettive future di una tipologia di coltura cellulare, ovvero dei microphysiological systems - MPS (o organs-on-chips), nuovi microdispositivi atti a riprodorre il più fedelmente possibile le condizioni fisiologiche adatte per la crescita e il mantenimento di strutture cellulari complesse. Verranno quindi inizialmente descritte le specifiche di base di questi dispositivi, sottolineandone l'innovatività dal punto di vista tecnologico e funzionale. Grazie agli MPS è infatti stato possibile intraprendere studi per una migliore comprensione del comportamento in condizioni dinamiche di una vasta gamma di tessuti, e la risposta di questi a stimoli chimici e fisici, rappresentativi di condizioni fisiologiche o patologiche, aprendo così le porte a nuovi standard per la sperimentazione clinica. Verrà quindi proposto un caso di studio, che riguarda l'applicazione di quanto sopra all'ambito cardiocircolatorio, prendendo in esame un modello di heart-on-a-chip, descrivendolo in tutte le fasi della sua realizzazione e infine discutendo uno studio riguardante la risposta delle cellule del muscolo cardiaco a un trattamento farmacologico.
Resumo:
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Resumo:
The benefit of the coronary collateral circulation (natural bypass network) on survival is well established. However, data derived from smaller studies indicates that coronary collaterals may increase the risk for restenosis after percutaneous coronary interventions. The purpose of this systematic review and meta-analysis of observational studies was to explore the impact of the collateral circulation on the risk for restenosis.
Resumo:
Microfluidic technology has been successfully applied to isolate very rare tumor-derived epithelial cells (circulating tumor cells, CTCs) from blood with relatively high yield and purity, opening up exciting prospects for early detection of cancer. However, a major limitation of state-of-the-art CTC-chips is their inability to characterize the behavior and function of captured CTCs, for example to obtain information on proliferative and invasive properties or, ultimately, tumor re-initiating potential. Although CTCs can be efficiently immunostained with markers reporting phenotype or fate (e.g. apoptosis, proliferation), it has not yet been possible to reliably grow captured CTCs over long periods of time and at single cell level. It is challenging to remove CTCs from a microchip after capture, therefore such analyses should ideally be performed directly on-chip. To address this challenge, we merged CTC capture with three-dimensional (3D) tumor cell culture on the same microfluidic platform. PC3 prostate cancer cells were isolated from spiked blood on a transparent PDMS CTC-chip, encapsulated on-chip in a biomimetic hydrogel matrix (QGel™) that was formed in situ, and their clonal 3D spheroid growth potential was assessed by microscopy over one week in culture. The possibility to clonally expand a subset of captured CTCs in a near-physiological in vitro model adds an important element to the expanding CTC-chip toolbox that ultimately should improve prediction of treatment responses and disease progression.
Resumo:
In a retrospective cohort study undertaken in 12 European countries, 249 female narcoleptic patients with cataplexy (n = 216) and without cataplexy (n = 33) completed a self-administrated questionnaire regarding pregnancy and childbirth. The cohort was divided further into patients whose symptoms of narcolepsy started before or during pregnancy (308 pregnancies) and those in whom the first symptoms of narcolepsy appeared after delivery (106 pregnancies). Patients with narcolepsy during pregnancy were older during their first pregnancy (P < 0.001) and had a higher body mass index (BMI) prior to pregnancy (P < 0.01). Weight gain during pregnancy was higher in narcoleptic patients with cataplexy (P < 0.01). More patients with narcolepsy-cataplexy during pregnancy had impaired glucose metabolism and anaemia. Three patients experienced cataplexy during delivery. The rate of caesarean sections was higher in the narcolepsy-cataplexy group compared to the narcolepsy group (P < 0.05). The mean birth weight and gestational age of neonates were within the normal range and did not differ across groups. Neonatal care was affected adversely by symptoms of narcolepsy in 60.1% of those with narcolepsy during pregnancy. This study reports more obstetric complications in patients with narcolepsy-cataplexy during pregnancy; however, these were not severe. This group also had a higher BMI and higher incidence of impaired glucose metabolism during pregnancy. Caesarian section was conducted more frequently in narcolepsy-cataplexy patients, despite cataplexy being a rare event during delivery. Furthermore, symptoms of narcolepsy may render care of the infant more difficult.
Resumo:
The proposed work aims to facilitate the development of a microfluidic platform for the production of advanced microcapsules containing active agents which can be the functional constituents of self-healing composites. The creation of such microcapsules is enabled by the unique flow characteristics within microchannels including precise control over shear and interfacial forces for droplet creation and manipulation as well as the ability to form a solid shell either chemically or via the addition of thermal or irradiative energy. Microchannel design and a study of the fluid dynamics and mechanisms for shell creation are undertaken in order to establish a fabrication approach capable of producing healing-agent-containing microcapsules. An in-depth study of the process parameters has been undertaken in order to elucidate the advantages of this production technique including precise control of size (i.e., monodispersity) and surface morphology of the microcapsules. This project also aims to aid the optimization of the mechanical properties as well as healing performance of self-healing composites by studying the effects of the advantageous properties of the as-produced microcapsules. Scale-up of the microfluidic fabrication using parallel devices on a single chip as well as on-chip microcapsule production and shape control will also be investigated. It will be demonstrated that microfluidic fabrication is a versatile approach for the efficient creation of functional microcapsules allowing for superior design of self-healing composites.
Resumo:
To evaluate primary care physicians' attitude towards implementation of rotavirus (RV) immunisation into the Swiss immunisation schedule, an eight-question internet-based questionnaire was sent to the 3799 subscribers of InfoVac, a nationwide web-based expert network on immunisation issues, which reaches >95% of paediatricians and smaller proportions of other primary care physicians. Five demographic variables were also inquired. Descriptive statistics and multivariate analyses for the main outcome "acceptance of routine RV immunisation" and other variables were performed. Diffusion of innovation theory was used for data assessment. Nine-hundred seventy-seven questionnaires were returned (26%). Fifty percent of participants were paediatricians. Routine RV immunisation was supported by 146 participants (15%; so called early adopters), dismissed by 620 (64%), leaving 211 (21%) undecided. However, when asked whether they would recommend RV vaccination to parents if it were officially recommended by the federal authorities and reimbursed, 467 (48.5%; so called early majority) agreed to recommend RV immunisation. Multivariate analysis revealed that physicians who would immunise their own child (OR: 5.1; 95% CI: 4.1-6.3), hospital-based physicians (OR: 1.6; 95% CI: 1.1-2.3) and physicians from the French (OR: 1.6; 95% CI: 1.2-2.3) and Italian speaking areas of Switzerland (OR: 2.5; 95% CI: 1.1-5.8) were more likely to support RV immunisation. Diffusion of innovation theory predicts a >80% implementation if approximately 50% of a given population support an innovation. Introduction of RV immunisation in Switzerland is likely to be successful, if (i) the federal authorities issue an official recommendation and (ii) costs are covered by basic health care insurance.
Resumo:
We report the fabrication and field emission properties of high-density nano-emitter arrays with on-chip electron extraction gate electrodes and up to 106 metallic nanotips that have an apex curvature radius of a few nanometers and a the tip density exceeding 108 cm−2. The gate electrode was fabricated on top of the nano-emitter arrays using a self-aligned polymer mask method. By applying a hot-press step for the polymer planarization, gate–nanotip alignment precision below 10 nm was achieved. Fabricated devices exhibited stable field electron emission with a current density of 0.1 A cm−2, indicating that these are promising for applications that require a miniature high-brightness electron source.
Resumo:
CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration,and the potential to perform image processing operations on-chip and in real-time. Here, the major challenges and design drivers for ground-based and space-based optical observation strategies for objects in Earth orbit have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and spacebased strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey assuming a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris was simulated.
Resumo:
High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.
Resumo:
The formation of blood vessels is a complex tissue-specific process that plays a pivotal role during developmental processes, in wound healing, cancer progression, fibrosis and other pathologies. To study vasculogenesis and vascular remodeling in the context of the lung, we developed an in-vitro microvascular model that closely mimics the human lung microvasculature in terms of 3D architecture, accessibility, functionality and cell types. Human pericytes from the distal airway were isolated and characterized using flow cytometry. To assess their role in the generation of normal microvessels, lung pericytes were mixed in fibrin gel and seeded into well-defined microcompartments together with primary endothelial cells (HUVEC). Patent microvessels covering an area of 3.1 mm2 formed within 3-5 days and were stable for up to 14 days. Soluble signals from the lung pericytes were necessary to establish perfusability, and pericytes migrated towards endothelial microvessels. Cell-cell communication in the form of adherens and tight junctions, as well as secretion of basement membrane was confirmed using transmission electron microscopy and immunocytochemistry on chip. Direct co-culture of pericytes with endothelial cells decreased the microvascular permeability by one order of magnitude from 17.8∙10-6 cm/s to 2.0∙10-6 cm/s and led to vessels with significantly smaller and less variable diameter. Upon phenylephrine administration, vasoconstriction was observed in microvessels lined with pericytes but not in endothelial microvessels only. Perfusable microvessels were also generated with human lung microvascular endothelial cells and lung pericytes. Human lung pericytes were thus shown to have a prominent influence on microvascular morphology, permeability, vasoconstriction and long-term stability in an in-vitro microvascular system. This biomimetic platform opens new possibilities to test functions and interactions of patient-derived cells in a physiologically relevant microvascular setting.