294 resultados para Nepenthes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Neogene planktonic foraminifera have been examined at Site 310 in the Central North Pacific and their stratigraphic ranges and frequencies are presented here. Blow's (1969) zonation developed for tropical regions has been applied where applicable. Where tropical index taxa are rare or absent in this temperate region, Globorotalia crassaformis, and the evolutionary bioseries G. conoidea - G. conomiozea and G. puncticulata - G. inflata have been found useful for zonal subdivisions. A correlation between stratigraphic ranges and frequency distributions of these species at Site 310 in the Central North Pacific, and Site 284 in the Southwest Pacific indicates that these species are relatively consistent biostratigraphic markers in temperate regions of both the North and South Pacific Oceans. An informal zonation for temperate latitudes of the Southwest Pacific has been established by Kennett (1973) and a similar zonal subdivision can be made at Site 310. Paleoclimatic/paleoceanographic interpretations based on coiling ratios, percent abundance, and phenotypic variations of Neogloboquadrina pachyderma indicate four major cold events during early, middle, and late Pliocene, and early Pleistocene. Faunal correlations of these events with similar events elsewhere in the Northeast and Southwest Pacific which have been paleomagnetically dated indicate the following approximate ages for these cold events: 4.7 Ma, 3.0 Ma, 2.6-1.8 Ma, and 1.2 Ma. Faunal assemblages have been divided into three groups representing cool, intermediate, and warmer water assemblages. Cool water assemblages are dominated by ~60% N. pachyderma; intermediate temperature faunas are dominated by species of Globigerina and Globigerinita and contain between 20% and 30% N. pachyderma. Warmer water assemblages are dominated by species of Globorotalia and contain <10% N. pachyderma. Frequency oscillations within these groups, in addition to paleotemperature parameters evident in N. pachyderma, afford refined paleoclimatic/paleoceanographic interpretations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Neogene planktonic foraminiferal biostratigraphy of DSDP Site 296, Leg 31, reveals this site as an ideal reference section for correlation of Blow's low-latitude zonation with the mid-latitude zonation for temperate faunal assemblages developed in this paper and earlier for DSDP Site 310, Leg 31 (Keller). Abundance of temperate species of Globorotalia (G. inflata, G. puncticulata, G. crassaformis, G. conomiozea) permit correlation with the zonal subdivision developed at Site 310 based on these species. Evolutionary changes within the Globorotalia inflata group also appear to be consistent biostratigraphie markers in mid latitudes; a primitive variety of this species first appears at about 3.3-3.1 Ma, G. inflata praeinflata appears at about 2.6 Ma, and the modern form appears at about 2.2-2.1 Ma. Quantitative analyses of planktonic foraminifera at DSDP Site 296 reveal an inversely reciprocal frequency oscillation between species of Globorotalia and the Globigerina-Globigerinita group. Cool climatic periods are characterized by high frequencies in the Globigerina-Globigerinita group and low frequencies in the Globorotalia group, whereas warm intervals are marked by high frequencies in the Globorotalia group and low frequencies in the Globigerina-Globigerinita group. Five cool paleoclimatic events can be recognized between early Pliocene and late Pleistocene: 4.4 Ma, 3.2-3.1 Ma, 2.4-2.2 Ma, 1.2 Ma, and 0.7 Ma. These paleoclimatic/paleoceanographic events have also been recognized in planktonic foraminifera of the Central and Northeast Pacific DSDP Sites 310 and 173 and also correlate to cold events recognized in oxygen isotope measurements of DSDP Site 310 and in equatorial Pacific cores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktonic foraminifera from Pliocene - Early Quaternary sediments of ODP Hole 111-677A were studied in detail. It was shown that the majority of detected zonal taxa are reliable biostratigraphic reference points. Between 30 and 210 m in the core zones of planktonic foraminifera from PL1b to Pt1 (according to the W.A. Berggren scale) were distinguished. Changes of planktonic foraminifera complexes from sediments of Hole 111-677A are closely associated with climate-controlled development of surface water masses of the Eastern Equatorial Pacific during 4.6-0.65 million years ago. Sharp decrease in equatorial-tropical species about 3.4 million years ago correlated with cessation of surface water exchange between tropical regions of the Pacific and Atlantic oceans due to formation of the Central American isthmus. The paleotemperature method of M.S Barash was used for reconstructing surface temperatures. Maximum temperatures were reconstructed in late Early Pliocene (26.4°C) and in Late Pliocene (26.6°C) and minimum ones - in the beginning of Early Pliocene (18.4°C), in the middle of Late Pliocene (19.6°C). Cold events occurred: 4.6-4.3, 2.8-2.5, and 1.7-1.2 million years ago, and warm: 4.3, 4.18-3.4, 2.5-2.3, and 1 million years ago. In general, the middle of Early Pliocene, the middle of late Pliocene and early Pleistocene are characterized by cold-water conditions, and the end of Early and the end of Late Pliocene - by warm-water conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.