975 resultados para Minstrel shows.
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.
Resumo:
The realities of new technological and social conditions since the 1990s demand a new approach to literacy teaching. Looking onward from the original statement of aims of the multiliteracies movement in 1996, this volume brings together top-quality scholarship and research that has embraced the notion and features new contributions by many of the originators of this approach to literacy. Drawing on large research projects and empirical evidence, the authors explore practical and educational issues that relate to multiliteracies, such as assessment, pedagogy and curriculum. The viewpoint taken is that multiliteracies is a complementary socio-cultural approach to the new literacies that includes pedagogy and learning. The differences are addressed from a multiliteracies perspective – one that does not discount or undermine the new literacies, but shows new ways in which they are complementary. Computers and the Internet are transforming the way we work and communicate and the very notion of literacy itself. This volume offers frontline information and a vital update for those wishing to understand the evolution of multiliteracies and the current state of literacy theory in relation to it.
Resumo:
The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.
Resumo:
This paper aims to develop an effective numerical simulation technique for the dynamic deflection analysis of nanotubes-based nanoswitches. The nanoswitch is simplified to a continuum structure, and some key material parameters are extracted from typical molecular dynamics (MD). An advanced local meshless formulation is applied to obtain the discretized dynamic equations for the numerical solution. The developed numerical technique is firstly validated by the static deflection analyses of nanoswitches, and then, the fundamental dynamic properties of nanoswitches are analyzed. A parametric comparison with the results in the literature and from experiments shows that the developed modelling approach is accurate, efficient and effective.
Resumo:
Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.
Resumo:
Background: Diagnosis of epithelial ovarian cancer (EOC) in young women has major implications including those to their reproductive potential. We evaluated depression, anxiety and body image in patients with stage I EOC treated with fertility sparing surgery (FSS) or radical surgery (RS). We also investigated fertility outcomes after FSS.----- Methods: A retrospective study was undertaken in which 62 patients completed questionnaires related to anxiety, depression, body image and fertility outcomes. Additional information on adjuvant therapy after FSS and RS and demographic details were abstracted from medical records. Both bi and multivariate regression models were used to assess the relationship between demographic, clinical and pathological results and scores for anxiety, depression and body image.----- Results: Thirty-nine patients underwent RS and the rest, FSS. The percentage of patients reporting elevated anxiety and depression (subscores ≥ 11) were 27 % and 5% respectively. The median (inter quartile range) score for body image scale (BIS) was 6 (3-15). None of the demographic or clinical factors examined showed significant association with anxiety and BIS with the exception of ‘time since diagnosis’. For depression, post-menopausal status was the only independent predictor. Among those 23 patients treated by FSS, 14 patients tried to conceive (7 successful), resulting in 7 live births, one termination of pregnancy and one miscarriage.----- Conclusion: This study shows that psychological issues are common in women treated for stage I EOC. Reproduction after FSS is feasible and lead to the birth of healthy babies in about half of patients who wished to have another child. Further prospective studies with standardised instruments are required.
Resumo:
The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.
Resumo:
Manuscript Type: Empirical Research Issue: We propose that high levels of monitoring are not always in the best interests of minority shareholders. In family-owned companies the optimal level of board monitoring required by minority shareholders is expected to be lower than that of other companies. This is because the relative benefits and costs of monitoring are different in family-owned companies. Research Findings: At moderate levels of board monitoring, we find concave relationships between board monitoring variables and firm performance for family-owned companies but not for other companies. The optimal level of board monitoring for our sample of Asian family-owned companies equates to board independence of 38%, separation of the Chairman and CEO positions and establishment of audit and remuneration committees. Additional testing shows that the optimal level of board monitoring is sensitive to the magnitude of the agency conflict between the family group and minority shareholders and the presence of substitute monitoring. Practitioner/Policy Implications: For policymakers, the results show that more monitoring is not always in the best interests of minority shareholders. Therefore, it may be inappropriate for regulators to advise all companies to follow the same set of corporate governance guidelines. However, our results also indicate that the board governance practices of family-owned companies are still well below the identified optimal levels. Keywords: Corporate Governance, Board Independence, Board of Directors, Family Firms, Monitoring.
Resumo:
In children, the pain and anxiety associated with acute burn dressing changes can be severe, with drug treatment alone frequently proving to be inadequate. Virtual reality (VR) systems have been successfully trialled in limited numbers of adult and paediatric burn patients. Augmented reality (AR) differs from VR in that it overlays virtual images onto the physical world, instead of creating a complete virtual world. This prospective randomised controlled trial investigated the use of AR as an adjunct to analgesia and sedation in children with acute burns. Forty-two children (30 male and 12 female), with an age range of 3–14 years (median age 9 years) and a total burn surface area ranging from 1 to 16% were randomised into a treatment (AR) arm and a control (basic cognitive therapy) arm after administration of analgesia and/or sedation. Pain scores, pulse rates (PR), respiratory rates (RR) and oxygen saturations (SaO2) were recorded pre-procedurally, at 10 min intervals and post-procedurally. Parents were also asked to grade their child's overall pain score for the dressing change. Mean pain scores were significantly lower (p = 0.0060) in the AR group compared to the control group, as were parental pain assessment scores (p = 0.015). Respiratory and pulse rates showed significant changes over time within groups, however, these were not significantly different between the two study groups. Oxygen saturation did not differ significantly over time or between the two study groups. This trial shows that augmented reality is a useful adjunct to pharmacological analgesia.
Resumo:
This study examines whether voluntary national governance codes have a significant effect on company disclosure practices. Two direct effects of the codes are expected: 1) an overall improvement in company disclosure practices, which is greater when the codes have a greater emphasis on disclosure; and 2) a leveling out of disclosure practices across companies (i.e., larger improvements in companies that were previously poorer disclosers) due to the codes new comply-or-explain requirements. The codes are also expected to have an indirect effect on disclosure practices through their effect on company governance practices. The results show that the introduction of the codes in eight East Asian countries has been associated with lower analyst forecast error and a leveling out of disclosure practices across companies. The codes are also found to have an indirect effect on company disclosure practices through their effect on board independence. This study shows that a regulatory approach to improving disclosure practices is not always necessary. Voluntary national governance codes are found to have both a significant direct effect and a significant indirect effect on company disclosure practices. In addition, the results indicate that analysts in Asia do react to changes in disclosure practices, so there is an incentive for small companies and family-owned companies to further improve their disclosure practices.
Resumo:
This paper considers the implications of the permanent/transitory decomposition of shocks for identification of structural models in the general case where the model might contain more than one permanent structural shock. It provides a simple and intuitive generalization of the influential work of Blanchard and Quah [1989. The dynamic effects of aggregate demand and supply disturbances. The American Economic Review 79, 655–673], and shows that structural equations with known permanent shocks cannot contain error correction terms, thereby freeing up the latter to be used as instruments in estimating their parameters. The approach is illustrated by a re-examination of the identification schemes used by Wickens and Motto [2001. Estimating shocks and impulse response functions. Journal of Applied Econometrics 16, 371–387], Shapiro and Watson [1988. Sources of business cycle fluctuations. NBER Macroeconomics Annual 3, 111–148], King et al. [1991. Stochastic trends and economic fluctuations. American Economic Review 81, 819–840], Gali [1992. How well does the ISLM model fit postwar US data? Quarterly Journal of Economics 107, 709–735; 1999. Technology, employment, and the business cycle: Do technology shocks explain aggregate fluctuations? American Economic Review 89, 249–271] and Fisher [2006. The dynamic effects of neutral and investment-specific technology shocks. Journal of Political Economy 114, 413–451].
Resumo:
This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.
Resumo:
New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.
Resumo:
The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.
Resumo:
In this study, biometric and structural engineering tool have been used to examine a possible relationship within Chuaria–Tawuia complex and micro-FTIR (Fourier Transform Infrared Spectroscopy) analyses to understand the biological affinity of Chuaria circularis Walcott, collected from the Mesoproterozoic Suket Shales of the Vindhyan Supergroup and the Neoproterozoic Halkal Shales of the Bhima Group of peninsular India. Biometric analyses of well preserved carbonized specimens show wide variation in morphology and uni-modal distribution. We believe and demonstrate to a reasonable extent that C. circularis most likely was a part of Tawuia-like cylindrical body of algal origin. Specimens with notch/cleft and overlapping preservation, mostly recorded in the size range of 3–5 mm, are of special interest. Five different models proposed earlier on the life cycle of C. circularis are discussed. A new model, termed as ‘Hybrid model’ based on present multidisciplinary study assessing cylindrical and spherical shapes suggesting variable cell wall strength and algal affinity is proposed. This model discusses and demonstrates varied geometrical morphologies assumed by Chuaria and Tawuia, and also shows the inter-relationship of Chuaria–Tawuia complex. Structural engineering tool (thin walled pressure vessel theory) was applied to investigate the implications of possible geometrical shapes (sphere and cylinder), membrane (cell wall) stresses and ambient pressure environment on morphologically similar C. circularis and Tawuia. The results suggest that membrane stresses developed on the structures similar to Chuaria–Tawuia complex were directly proportional to radius and inversely proportional to the thickness in both cases. In case of hollow cylindrical structure, the membrane stresses in circumferential direction (hoop stress) are twice of the longitudinal direction indicating that rupture or fragmentation in the body of Tawuia would have occurred due to hoop stress. It appears that notches and discontinuities seen in some of the specimens of Chuaria may be related to rupture suggesting their possible location in 3D Chuaria. The micro-FTIR spectra of C. circularis are characterized by both aliphatic and aromatic absorption bands. The aliphaticity is indicated by prominent alkyl group bands between 2800–3000 and 1300–1500 cm−1. The prominent absorption signals at 700–900 cm−1 (peaking at 875 and 860 cm−1) are due to aromatic CH out of plane deformation. A narrow, strong band is centred at 1540 cm−1 which could be COOH band. The presence of strong aliphatic bands in FTIR spectra suggests that the biogeopolymer of C. circularis is of aliphatic nature. The wall chemistry indicates the presence of ‘algaenan’—a biopolymer of algae.