482 resultados para Microsatellites
Resumo:
Blastocerus dichotomus, the marsh deer, is the largest Brazilian Cervidae species. The species is endangered because of hunting and loss of its natural habitat, i.e., flood plain areas, because of hydroelectric power station construction and agricultural land expansion. In the present study, we tested 38 microsatellite loci from four Cervidae species: Odocoileus virginianus (7), Rangifer tarandus (17), Capreolus capreolus (7), and Mazama bororo (7). Eleven loci showed clear amplification, opening a new perspective for the generation of fundamental population genetic data for devising conservation strategies for B. dichotomus. © FUNPEC-RP.
Resumo:
The most significant studies about the spinner dolphin (Stenella longirostris) in the Southwestern Atlantic Ocean were conducted in Fernando de Noronha Archipelago, off Northeastern Brazil. The continuity of these studies depends upon the development of non-invasive methods. In this work, we present results from the skin swabbing sampling procedure for this species. We tested the performance of this method for nuclear and mitochondrial DNA analysis, unknown for this population. A total of skin 161 samples were collected during two expeditions. After the contacts the most of the dolphins remained close to the boat. Microsatellites markers and cytochrome b region primers were evaluated and the respective fragments were successfully amplified. Thus, skin swabbing may be considered an efficient strategy to obtain tissue samples for spinner dolphin genetic analysis in Fernando de Noronha Archipelago.
Resumo:
Background: New challenges are rising in the animal protein market, and one of the main world challenges is to produce more in shorter time, with better quality and in a sustainable way. Brazil is the largest beef exporter in volume hence the factors affecting the beef meat chain are of major concern in countrýs economy. An emerging class of biotechnological approaches, the molecular markers, is bringing new perspectives to face these challenges, particularly after the publication of the first complete livestock genome (bovine), which has triggered a massive initiative to put in practice the benefits of the so called the Post-Genomic Era. Review: This article aimed at showing the directions and insights in the application of molecular markers on livestock genetic improvement and reproduction as well at organizing the progress so far, pointing some perspectives of these emerging technologies in Brazilian ruminant production context. An overview on the nature of the main molecular markers explored in ruminant production is provided, which describes the molecular bases and detection approaches available for microsatellites (STR) and single nucleotide polymorphisms (SNP). A topic is dedicated to review the history of association studies between markers and important trait variation in livestock, showing the timeline starting on quantitative trait loci (QTL) identification using STR markers and ending in high resolution SNP panels to proceed whole genome scans for phenotype/genotype association. Also the article organizes this information to reveal how QTL prospection using STR could open ground to the feasibility of marker-assisted selection and why this approach is quickly being replaced by studies involving the application of genome-wide association using SNP research in a new concept called genomic selection. Conclusion: The world's scientific community is dedicating effort and resources to apply SNP information in livestock selection through the development of high density panels for genomic association studies, connecting molecular genetic data with phenotypes of economic interest. Once generated, this information can be used to take decisions in genetic improvement programs by selecting animals with the assistance of molecular markers.
Resumo:
The new-generation 454 GS-FLX Titanium pyrosequencing was used to isolate microsatellite markers for the Brazilian Guanabara frog, Euparkerella brasiliensis, an Atlantic forest endemic species. Three multiplex polymerase chain reaction sets were optimized for genotyping of 11 polymorphic (di- and tetranucleotide) microsatellite markers. Genetic diversity was assessed in 21 individuals from a population (Reserva Ecológica de Guapiaçu, REGUA) locatedin the central region of the Rio de Janeiro State, in Brazil. The mean number of alleles per locus ranged from 3 to 12. Observed and expected heterozygosities ranged from 0.095 to 0.905 and from 0.094 to 0.904, respectively. After using the Bonferroni correction for multiple tests, there was no evidence of linkage disequilibrium between pairs of loci but deviations for Hardy-Weinberg equilibrium were found in 4 loci. We found no evidence for allele dropouts or stuttering, but we detected the presence of null alleles at loci Eb10 and Eb36. These markers will be useful for analyses of fine-scale population structure and determination of relative effects of habitat loss and fragmentation on population genetic variability within species. © FUNPEC-RP.
Resumo:
Background: Opportunistic infections are an increasingly common problem in hospitals, and the yeast Candida parapsilosis has emerged as an important nosocomial pathogen, especially in neonatal intensive care units (NICUs) where it has been responsible for outbreak cases. Risk factors for C. parapsilosis infection in neonates include prematurity, very low birth weight, prolonged hospitalization, indwelling central venous catheters, hyperalimentation, intravenous fatty emulsions and broad spectrum antibiotic therapy. Molecular methods are widely used to elucidate these hospital outbreaks, establishing genetic variations among strains of yeast. Aims: The aim of this study was to detect an outbreak of C. parapsilosis in an NICU at the Hospital das Clinicas , Faculty of Medicine of Botucatu, a tertiary hospital located in São Paulo, Brazil, using the molecular genotyping by the microsatellite markers analysis. Methods: A total of 11 cases of fungemia caused by C. parapsilosis were identified during a period of 43 days in the NICU. To confirm the outbreak all strains were molecularly typed using the technique of microsatellites. Results: Out of the 11 yeast samples studied, nine showed the same genotypic profile using the technique of microsatellites. Conclusions: Our study shows that the technique of microsatellites can be useful for these purposes. In conclusion, we detected the presence of an outbreak of C. parapsilosis in the NICU of the hospital analyzed, emphasizing the importance of using molecular tools, for the early detection of hospital outbreaks, and for the introduction of effective preventive measures, especially in NICUs. © 2012 Revista Iberoamericana de Micología.
Resumo:
Microsatellites, or simple sequence repeats (SSRs), have proven to be an important molecular marker in plant genetics and breeding research. The main strategies to obtain these markers can be through genomic DNA and from expressed sequence tags (ESTs) from mRNA/cDNA libraries. Genetic studies using microsatellite markers have increased rapidly because they can be highly polymorphic, codominant markers and they show heterozygous conserved sequences. Here, we describe a methodology to obtain microsatellite using the enrichment library of DNA genomic sequences. This method is highly efficient to development microsatellite markers especially in plants that do not have available ESTs or genome databases. This methodology has been used to enrich SSR marker libraries in Citrus spp., an important tool to genotype germplasm, to select zygotic hybrids, and to saturate genetic maps in breeding programs. © Springer Science+Business Media, LLC 2013.
Resumo:
Phylogeographic studies provide an important framework for investigating the mechanisms operating during the earliest stages of speciation, as reproductive barriers can be examined among divergent lineages in a geographic context. We investigated the evolution of early stages of intrinsic postmating isolation among different populations and lineages of Epidendrum denticulatum, a Neotropical orchid distributed across different biomes in South America. We estimated genetic diversity and structure for both nuclear and plastid markers, using a haplotype network, differentiation tests, Bayesian assignment analysis, and divergence time estimates of the main lineages. Reproductive barriers among divergent lineages were examined by analyzing seed viability following reciprocal crossing experiments. Strong plastid phylogeographic structure was found, indicating that E. denticulatum was restricted to multiple refuges during South American forest expansion events. In contrast, significant phylogeographic structure was not found for nuclear markers, suggesting higher gene flow by pollen than by seeds. Large asymmetries in seed set were observed among different plastid genetic groups, suggesting the presence of polymorphic genic incompatibilities associated with cytonuclear interactions. Our results confirm the importance of phylogeographic studies associated with reproductive isolation experiments and suggest an important role for outbreeding depression during the early stages of lineage diversification. © 2013 The Society for the Study of Evolution.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: The accumulation of repetitive DNA during sex chromosome differentiation is a common feature of many eukaryotes and becomes more evident after recombination has been restricted or abolished. The accumulated repetitive sequences include multigene families, microsatellites, satellite DNAs and mobile elements, all of which are important for the structural remodeling of heterochromatin. In grasshoppers, derived sex chromosome systems, such as neo-XY♂/XX♀ and neo-X1X2Y♂/X 1X1X2X2♀, are frequently observed in the Melanoplinae subfamily. However, no studies concerning the evolution of sex chromosomes in Melanoplinae have addressed the role of the repetitive DNA sequences. To further investigate the evolution of sex chromosomes in grasshoppers, we used classical cytogenetic and FISH analyses to examine the repetitive DNA sequences in six phylogenetically related Melanoplinae species with X0♂/XX♀, neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X 2X2♀ sex chromosome systems. Results: Our data indicate a non-spreading of heterochromatic blocks and pool of repetitive DNAs (C 0 t-1 DNA) in the sex chromosomes; however, the spreading of multigene families among the neo-sex chromosomes of Eurotettix and Dichromatos was remarkable, particularly for 5S rDNA. In autosomes, FISH mapping of multigene families revealed distinct patterns of chromosomal organization at the intra- and intergenomic levels. Conclusions: These results suggest a common origin and subsequent differential accumulation of repetitive DNAs in the sex chromosomes of Dichromatos and an independent origin of the sex chromosomes of the neo-XY and neo-X1X2Y systems. Our data indicate a possible role for repetitive DNAs in the diversification of sex chromosome systems in grasshoppers. © 2013Palacios-Gimenez et al.; licensee BioMed Central Ltd.
Resumo:
Background: The leaf-cutter ant Atta laevigata (Formicidae: Attini) is an agricultural pest largely distributed in the Neotropics and a model organism for studies of evolution, speciation and population genetics. Microsatellites are a very powerful tool for these kind of studies, but such markers are not available for studies on A. laevigata. In the present report, we describe the isolation and characterization of nine microsatellite loci in A. laevigata and the testing of these markers across other species of leaf-cutter ants. Findings. Nine microsatellite loci, consisting of six dinucloeotide, one trinucleotide, one tetranucleotide, and one di/trinucleotide repeat motifs, were isolated and characterized. Primers and protocols were successfully designed to selectively amplify these markers. To test effectiveness of these markers for detailed population genetic studies, we genotyped female workers collected from 36 monogynic nests of A. laevigata and found that eight loci were within Hardy-Weinberg expectations, while the remaining locus had a deficiency of heterozygotes. Micro-Checker analysis of individuals from 55 monogynic nests indicated that loci Alae11, Alae24, Alae18 showed signs of null alleles. For the remaining six loci, the number of alleles per locus ranged between 2 and 11, with expected heterozygosity ranging between 0.07 and 0.88. All of these loci cross-amplified in other species of Atta. Conclusions: These six polymorphic microsatellite loci should prove useful for future genetic investigations of the pest species Atta laevigata, as well as studies of other species of leaf-cutter ants in the genus Atta. © 2013 Kakazu et al.; licensee BioMed Central Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)