990 resultados para Markov states
Resumo:
Electron-deficient olefins add to thioenone 1 upon m* excitation. Cycloaddition occurs to the thiocarbonyl chromophore preferentially from the less-hindered side to yield thietanes. Thietane formation is stereospecific and regioselective. This addition has been inferred to originate from the second excited singlet, S2(?rx*), state. The exciplex intermediacy has been inferred from the dependence of the fluorescence quenching rate constant on the electron-acceptor properties of the olefin. The observed site specificity and regioselectivity are rationalized on the basis of PMO theory. The observed photochemical behavior of thioenone is different from that of enones.
Resumo:
Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn2+-dependent dipeptidase. The crystal structure of this protein in the Mn2+-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys(155) and Cys(178), are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.
Resumo:
Background: Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods: Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results: Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion: In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria.
Corresponding States Correlations For Sound-Velocity In Saturated Cryogenic Liquids And Refrigerants
Resumo:
Embryonic stem cells offer potentially a ground-breaking insight into health and diseases and are said to offer hope in discovering cures for many ailments unimaginable few years ago. Human embryonic stem cells are undifferentiated, immature cells that possess an amazing ability to develop into almost any body cell such as heart muscle, bone, nerve and blood cells and possibly even organs in due course. This remarkable feature, enabling embryonic stem cells to proliferate indefinitely in vitro (in a test tube), has branded them as a so-called miracle cure . Their potential use in clinical applications provides hope to many sufferers of debilitating and fatal medical conditions. However, the emergence of stem cell research has resulted in intense debates about its promises and dangers. On the one hand, advocates hail its potential, ranging from alleviating and even curing fatal and debilitating diseases such as Parkinson s, diabetes, heart ailments and so forth. On the other hand, opponents decry its dangers, drawing attention to the inherent risks of human embryo destruction, cloning for research purposes and reproductive cloning eventually. Lately, however, the policy battles surrounding human embryonic stem cell innovation have shifted from being a controversial research to scuffles within intellectual property rights. In fact, the ability to obtain patents represents a pivotal factor in the economic success or failure of this new biotechnology. Although, stem cell patents tend to more or less satisfy the standard patentability requirements, they also raise serious ethical and moral questions about the meaning of the exclusions on ethical or moral grounds as found in European and to an extent American and Australian patent laws. At present there is a sort of a calamity over human embryonic stem cell patents in Europe and to an extent in Australia and the United States. This in turn has created a sense of urgency to engage all relevant parties in the discourse on how best to approach patenting of this new form of scientific innovation. In essence, this should become a highly favoured patenting priority. To the contrary, stem cell innovation and its reliance on patent protection risk turmoil, uncertainty, confusion and even a halt on not only stem cell research but also further emerging biotechnology research and development. The patent system is premised upon the fundamental principle of balance which ought to ensure that the temporary monopoly awarded to the inventor equals that of the social benefit provided by the disclosure of the invention. Ensuring and maintaining this balance within the patent system when patenting human embryonic stem cells is of crucial contemporary relevance. Yet, the patenting of human embryonic stem cells raises some fundamental moral, social and legal questions. Overall, the present approach of patenting human embryonic stem cell related inventions is unsatisfactory and ineffective. This draws attention to a specific question which provides for a conceptual framework for this work. That question is the following: how can the investigated patent offices successfully deal with patentability of human embryonic stem cells? This in turn points at the thorny issue of application of the morality clause in this field. In particular, the interpretation of the exclusions on ethical or moral grounds as found in Australian, American and European legislative and judicial precedents. The Thesis seeks to compare laws and legal practices surrounding patentability of human embryonic stem cells in Australia and the United States with that of Europe. By using Europe as the primary case study for lessons and guidance, the central goal of the Thesis then becomes the determination of the type of solutions available to Europe with prospects to apply such to Australia and the United States. The Dissertation purports to define the ethical implications that arise with patenting human embryonic stem cells and intends to offer resolutions to the key ethical dilemmas surrounding patentability of human embryonic stem cells and other morally controversial biotechnology inventions. In particular, the Thesis goal is to propose a functional framework that may be used as a benchmark for an informed discussion on the solution to resolving ethical and legal tensions that come with patentability of human embryonic stem cells in Australian, American and European patent worlds. Key research questions that arise from these objectives and which continuously thread throughout the monograph are: 1. How do common law countries such as Australia and the United States approach and deal with patentability of human embryonic stem cells in their jurisdictions? These practices are then compared to the situation in Europe as represented by the United Kingdom (first two chapters), the Court of Justice of the European Union and the European Patent Office decisions (Chapter 3 onwards) in order to obtain a full picture of the present patenting procedures on the European soil. 2. How are ethical and moral considerations taken into account at patent offices investigated when assessing patentability of human embryonic stem cell related inventions? In order to assess this part, the Thesis evaluates how ethical issues that arise with patent applications are dealt with by: a) Legislative history of the modern patent system from its inception in 15th Century England to present day patent laws. b) Australian, American and European patent offices presently and in the past, including other relevant legal precedents on the subject matter. c) Normative ethical theories. d) The notion of human dignity used as the lowest common denominator for the interpretation of the European morality clause. 3. Given the existence of the morality clause in form of Article 6(1) of the Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions which corresponds to Article 53(a) European Patent Convention, a special emphasis is put on Europe as a guiding principle for Australia and the United States. Any room for improvement of the European morality clause and Europe s current manner of evaluating ethical tensions surrounding human embryonic stem cell inventions is examined. 4. A summary of options (as represented by Australia, the United States and Europe) available as a basis for the optimal examination procedure of human embryonic stem cell inventions is depicted, whereas the best of such alternatives is deduced in order to create a benchmark framework. This framework is then utilised on and promoted as a tool to assist Europe (as represented by the European Patent Office) in examining human embryonic stem cell patent applications. This method suggests a possibility of implementing an institution solution. 5. Ultimately, a question of whether such reformed European patent system can be used as a founding stone for a potential patent reform in Australia and the United States when examining human embryonic stem cells or other morally controversial inventions is surveyed. The author wishes to emphasise that the guiding thought while carrying out this work is to convey the significance of identifying, analysing and clarifying the ethical tensions surrounding patenting human embryonic stem cells and ultimately present a solution that adequately assesses patentability of human embryonic stem cell inventions and related biotechnologies. In answering the key questions above, the Thesis strives to contribute to the broader stem cell debate about how and to which extent ethical and social positions should be integrated into the patenting procedure in pluralistic and morally divided democracies of Europe and subsequently Australia and the United States.
Resumo:
The binding of 1-anilino-8-naphthalene-sulfonic acid to globular proteins at acidic pH has been investigated by electrospray ionization mass spectrometry (ESIMS). Mass spectra of apomyoglobin recorded in the pH range 2−7 establish that maximal ANS binding is observed at pH 4.0. As many as seven distinct species may be observed in the gas phase which correspond to protein molecules containing one to six molecules of bound ANS. At neutral pH only a single molecule of ANS is bound. In the case of cytochrome c, maximal binding is observed at pH 4.0, with five molecules being bound. Binding is suppressed at neutral pH. In both cases ESIMS demonstrates maximal ANS binding at pH values where the proteins have been reported to exist in molten globule states. ANS binding is not observed for lysozyme, which has a tightly folded structure over the entire pH range. Reduction of disulfide bonds in lysozyme leads to the detection of ANS-bound species at neutral pH. Binding is suppressed at low pH due to complete unfolding of the reduced protein. The results suggest that ESIMS may provide a convenient method of probing the stoichiometry and distribution of dye complexes with molten protein globules
Resumo:
Open-circuit potential—time transients during the discharge of alkaline porous iron electrodes at various states-of-charge have been studied. From this, it has been possible to arrive at a correlation between the parameters of self-discharge kinetics of the electrode and observed open-circuit potential—recovery time constants. The study provides a method of estimate the state-of-charge of the rechargeable iron electrodes. As a hydrogen evolution reaction inevitably occurs on alkaline iron electrodes, the kinetics of the reaction have also been investigated.
Resumo:
The low-lying singlets and triplets of biphenyl are obtained exactly within the PPP model using the diagrammatic valence bond method. The energy gaps within the singlet manifold as well as the lowest singlet-triplet gap are found to be in good agreement with experimental results. The two weak absorptions between 4·1 and 4·2 eV reported experimentally are attributed to the two states lying below the optical gap that become weakly allowed on breaking electron-hole and inversion symmetries. The observed blue shift of the spectral lines, attributed to a change in dihedral angle, on going from crystalline to solution to vapour phase is also well reproduced within the PPP model. The bond orders show that the ground singlet state is benzenoidal while the dipole excited state as well as the lowest triplet state are quinonoidal and planar. Comparison with the experimental spin densities and the fine structure constants D and E in the triplet state point to slightly weaker correlations than assumed by the PPP model. The introduction of a 1-8 bond to mimic poly(paraphenylene)s gives an optical gap that is in good agreement with experiment.
Resumo:
The dissertation examines the foreign policies of the United States through the prism of science and technology. In the focal point of scrutiny is the policy establishing the International Institute for Applied Systems Analysis (IIASA) and the development of the multilateral part of bridge building in American foreign policy during the 1960s and early 1970s. After a long and arduous negotiation process, the institute was finally established by twelve national member organizations from the following countries: Bulgaria, Canada, Czechoslovakia, Federal Republic of Germany (FRG), France, German Democratic Republic (GDR), Great Britain, Italy, Japan, Poland, Soviet Union and United States; a few years later Sweden, Finland and the Netherlands also joined. It is said that the goal of the institute was to bring together researchers from East and West to solve pertinent problems caused by the modernization process experienced in industrialized world. It originates from President Lyndon B. Johnson s bridge building policies that were launched in 1964, and was set in a well-contested and crowded domain of other international organizations of environmental and social planning. Since the distinct need for yet another organization was not evident, the process of negotiations in this multinational environment enlightens the foreign policy ambitions of the United States on the road to the Cold War détente. The study places this project within its political era, and juxtaposes it with other international organizations, especially that of the OECD, ECE and NATO. Conventionally, Lyndon Johnson s bridge building policies have been seen as a means to normalize its international relations bilaterally with different East European countries, and the multilateral dimension of the policy has been ignored. This is why IIASA s establishment process in this multilateral environment brings forth new information on US foreign policy goals, the means to achieve these goals, as well as its relations to other advanced industrialized societies before the time of détente, during the 1960s and early 1970s. Furthermore, the substance of the institute applied systems analysis illuminates the differences between European and American methodological thinking in social planning. Systems analysis is closely associated with (American) science and technology policies of the 1960s, especially in its military administrative applications, thus analysis within the foreign policy environment of the United States proved particularly fruitful. In the 1960s the institutional structures of European continent with faltering, and the growing tendencies of integration were in flux. One example of this was the long, drawn-out process of British membership in the EEC, another is de Gaulle s withdrawal from NATO s military-political cooperation. On the other hand, however, economic cooperation in Europe between East and West, and especially with the Soviet Union was expanding rapidly. This American initiative to form a new institutional actor has to be seen in that structural context, showing that bridge building was needed not only to the East, but also to the West. The narrative amounts to an analysis of how the United States managed both cooperation and conflict in its hegemonic aspirations in the emerging modern world, and how it used its special relationship with the United Kingdom to achieve its goals. The research is based on the archives of the United States, Great Britain, Sweden, Finland, and IIASA. The primary sources have been complemented with both contemporary and present day research literature, periodicals, and interviews.
Resumo:
We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.