979 resultados para Machines à vecteurs de support
Resumo:
In order to improve the diagnosis of human leptospirosis, we standardized the dot-ELISA for the search of specific IgM antibodies in saliva. Saliva and serum samples were collected simultaneously from 20 patients with the icterohemorrhagic form of the disease, from 10 patients with other pathologies and from 5 negative controls. Leptospires of serovars icterohaemorrhagiae, canicola, hebdomadis, brasiliensis and cynopteri grown in EMJH medium and mixed together in equal volumes, were used as antigen at individual protein concentration of 0.2 µg/µl. In the solid phase of the test we used polyester fabric impregnated with N-methylolacrylamide resin. The antigen volume for each test was 1µl, the saliva volume was 8 µl, and the volume of peroxidase-labelled anti-human IgM conjugate was 30 µl. A visual reading was taken after development in freshly prepared chromogen solution. In contrast to the classic nitrocellulose membrane support, the fabric support is easy to obtain and to handle. Saliva can be collected directly onto the support, a fact that facilitates the method and reduces the expenses and risks related to blood processing.
Resumo:
Over the last fifty years mobility practices have changed dramatically, improving the way travel takes place, the time it takes but also on matters like road safety and prevention. High mortality caused by high accident levels has reached untenable levels. But the research into road mortality stayed limited to comparative statistical exercises which go no further than defining accident types. In terms of sharing information and mapping accidents, little progress has been mad, aside from the normal publication of figures, either through simplistic tables or web pages. With considerable technological advances on geographical information technologies, research and development stayed rather static with only a few good examples on dynamic mapping. The use of Global Positioning System (GPS) devices as normal equipments on automobile industry resulted in a more dynamic mobility patterns but also with higher degrees of uncertainty on road traffic. This paper describes a road accident georeferencing project for the Lisbon District involving fatalities and serious injuries during 2007. In the initial phase, individual information summaries were compiled giving information on accidents and its majour characteristics, collected by the security forces: the Public Safety Police Force (Polícia de Segurança Pública - PSP) and the National Guard (Guarda Nacional Republicana - GNR). The Google Earth platform was used to georeference the information in order to inform the public and the authorities of the accident locations, the nature of the location, and the causes and consequences of the accidents. This paper also gives future insights about augmented reality technologies, considered crucial to advances to road safety and prevention studies. At the end, this exercise could be considered a success because of numerous consequences, as for stakeholders who decide what to do but also for the public awareness to the problem of road mortality.
Resumo:
Um dos princípios da Gestão é: “If you cannot measure it, you cannot improve it.” In The Economist – 26.Dez.2008, idea of 19th century English physicist Lord Kelvin. Embora seja uma afirmação aplicável à gestão económica, também pode ser utilizada no domínio da gestão da energia. Este trabalho surge da necessidade sentida pela empresa Continental - Industria Têxtil do Ave, S.A. em efetuar uma atualização dos seus standards de produção, minimizando os seus consumos de eletricidade e gás natural. Foi necessário efetuar o levantamento dos consumos em diversas máquinas e equipamentos industriais, caracterizando e analisando os consumos ao longo de todo o processo produtivo. Para o tratamento de dados recolhidos foi desenvolvida uma folha de cálculo em MS Office ExcelTM com metodologia adequada ao equipamento em análise, que dará apoio ao decisor para a identificação dos aspetos que melhorem o processo produtivo e garantam uma elevada eficiência energética. Porém, não se enquadra no âmbito do Plano Nacional de Racionalização de Energia, sendo uma “auditoria energética” ao processo produtivo. Recentemente, a empresa, tem vindo a utilizar equipamentos eletrónicos que permitem otimizar o funcionamento mecânico dos equipamentos e das potências instaladas dos transformadores, na tentativa de racionalizar o consumo da energia elétrica. Outros equipamentos como, conversores de frequência para controlo de motores, balastros eletrónicos que substituem os convencionais balastros ferromagnéticos das lâmpadas de descarga fluorescente, têm sido incluídos ao nível das instalações elétricas, sendo gradualmente substituída a eletromecânica pela eletrónica. Este tipo de soluções vem deteriorar as formas de onda da corrente e da tensão do sistema pela introdução de distorções harmónicas. Faz ainda parte deste trabalho, um estudo de uma solução que melhore, simultaneamente o fator de potência e reduza as harmónicas presentes num posto de transformação localizado no seio da fábrica. Esta solução, permite melhorar a qualidade da energia elétrica e as condições de continuidade de serviço, garantindo melhores condições de exploração e incrementando a produtividade da empresa.
Resumo:
This paper proposes a wind speed forecasting model that contributes to the development and implementation of adequate methodologies for Energy Resource Man-agement in a distribution power network, with intensive use of wind based power generation. The proposed fore-casting methodology aims to support the operation in the scope of the intraday resources scheduling model, name-ly with a time horizon of 10 minutes. A case study using a real database from the meteoro-logical station installed in the GECAD renewable energy lab was used. A new wind speed forecasting model has been implemented and it estimated accuracy was evalu-ated and compared with a previous developed forecast-ing model. Using as input attributes the information of the wind speed concerning the previous 3 hours enables to obtain results with high accuracy for the wind short-term forecasting.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Sistemas de Informação Industriais, Engenharia Electrotécnica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.
Resumo:
The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade No Lisboa para obtenção de grau de Mestre em Engenharia de Informática
Resumo:
Com um mercado automóvel cada vez mais competitivo e com os construtores automóveis à procura de atingir os zero defeitos nos seus produtos, a Bosch Car Multimédia Portugal S.A, fabricante de sistemas multimédia para o mercado automóvel, tem como objetivo a qualidade perfeita dos seus produtos. Tal perfeição exige processos de fabrico cada vez mais evoluídos e com melhores sistemas de auxílio à montagem. Nesse sentido, a incorporação de sistemas de visão artificial para verificação da montagem correta dos componentes em sistemas multimédia tem vindo a crescer largamente. Os sistemas de inspeção visual da Cognex tornaram-se o standard da Bosch para a verifi-cação da montagem de componentes por serem sistemas bastante completos, fáceis de con-figurar e com um suporte técnico bastante completo. Estes sistemas têm vindo a ser inte-grados em diversas máquinas (postos) de montagem e nunca foi desenvolvida uma ferra-menta normalizada para integração destes sistemas com as máquinas. A ideia principal deste projeto passou por desenvolver um sistema (uma aplicação informá-tica) que permita controlar os indicadores de qualidade destes sistemas de visão, garantir o seguimento dos produtos montados e, ao mesmo tempo, efetuar cópias de segurança de todo o sistema para utilização em caso de avaria ou de troca de equipamento. Tal sistema foi desenvolvido recorrendo à programação de uma Dynamic Link Library (DLL), através da linguagem VisualBasic.NET, que permite às aplicações dos equipamen-tos (máquinas) da Bosch Car Multimédia comunicarem de uma forma universal e transpa-rente com os sistemas de inspeção visual da marca Cognex. Os objetivos a que o autor se propôs no desenvolvimento deste sistema foram na sua maioria alcançados e o projeto encontra-se atualmente implementado e em execução nas linhas de produção da Bosch Car Multimédia.
Resumo:
O projeto tem como objetivo desenvolver e avaliar um modelo que facilita o acesso para pessoas surdas ou com deficiência auditiva, o acesso ao conteúdo digital - em particular o conteúdo educacional e objetos de aprendizagem – a criação de condições para uma maior inclusão social de surdos e deficientes auditivos. Pretende-se criar um modelo bidirecional, em que permite a pessoas com deficiências auditivas, possam se comunicar com outras pessoas, com a tradução da Língua Gestual Portuguesa (LGP) para a Língua Portuguesa (LP) e que outras pessoas não portadoras de qualquer deficiência auditiva possam por sua vez comunicar com os surdos ou deficientes auditivos através da tradução da LP para a LGP. Há um conjunto de técnicas que poderíamos nos apoiar para desenvolver o modelo e implementar a API de tradução da LGP em LP. Muitos estudos são feitos com base nos modelos escondidos de Markov (HMM) para efetuar o reconhecimento. Recentemente os estudos estão a caminhar para o uso de técnicas como o “Dynamic Time Warping” (DTW), que tem tido mais sucesso do que outras técnicas em termos de performance e de precisão. Neste projeto optamos por desenvolver a API e o Modelo, com base na técnica de aprendizagem Support Vector Machines (SVM) por ser uma técnica simples de implementar e com bons resultados demonstrados em reconhecimento de padrões. Os resultados obtidos utilizando esta técnica de aprendizagem foram bastante ótimos, como iremos descrever no decorrer do capítulo 4, mesmo sabendo que utilizamos dois dispositivos para capturar dados de descrição de cada gesto. Toda esta tese integra-se no âmbito do projeto científico/ investigação a decorrer no grupo de investigação GILT, sob a coordenação da professora Paula Escudeiro e suportado pela Fundação para Ciência e Tecnologia (FCT).