962 resultados para MULTIPLE-DOSE PHARMACOKINETICS
Resumo:
This study uses dosimetry film measurements and Monte Carlo simulations to investigate the accuracy of type-a (pencil-beam) dose calculations for predicting the radiation doses delivered during stereotactic radiotherapy treatments of the brain. It is shown that when evaluating doses in a water phantom, the type-a algorithm provides dose predictions which are accurate to within clinically relevant criteria, gamma(3%,3mm), but these predictions are nonetheless subtly different from the results of evaluating doses from the same fields using radiochromic film and Monte Carlo simulations. An analysis of a clinical meningioma treatment suggests that when predicting stereotactic radiotherapy doses to the brain, the inaccuracies of the type-a algorithm can be exacerbated by inadequate evaluation of the effects of nearby bone or air, resulting in dose differences of up to 10% for individual fields. The results of this study indicate the possible advantage of using Monte Carlo calculations, as well as measurements with high-spatial resolution media, to verify type-a predictions of dose delivered in cranial treatments.
Resumo:
We consider the problem of how to efficiently and safely design dose finding studies. Both current and novel utility functions are explored using Bayesian adaptive design methodology for the estimation of a maximum tolerated dose (MTD). In particular, we explore widely adopted approaches such as the continual reassessment method and minimizing the variance of the estimate of an MTD. New utility functions are constructed in the Bayesian framework and are evaluated against current approaches. To reduce computing time, importance sampling is implemented to re-weight posterior samples thus avoiding the need to draw samples using Markov chain Monte Carlo techniques. Further, as such studies are generally first-in-man, the safety of patients is paramount. We therefore explore methods for the incorporation of safety considerations into utility functions to ensure that only safe and well-predicted doses are administered. The amalgamation of Bayesian methodology, adaptive design and compound utility functions is termed adaptive Bayesian compound design (ABCD). The performance of this amalgamation of methodology is investigated via the simulation of dose finding studies. The paper concludes with a discussion of results and extensions that could be included into our approach.
Resumo:
This paper reports on the development of a tool that generates randomised, non-multiple choice assessment within the BlackBoard Learning Management System interface. An accepted weakness of multiple-choice assessment is that it cannot elicit learning outcomes from upper levels of Biggs’ SOLO taxonomy. However, written assessment items require extensive resources for marking, and are susceptible to copying as well as marking inconsistencies for large classes. This project developed an assessment tool which is valid, reliable and sustainable and that addresses the issues identified above. The tool provides each student with an assignment assessing the same learning outcomes, but containing different questions, with responses in the form of words or numbers. Practice questions are available, enabling students to obtain feedback on their approach before submitting their assignment. Thus, the tool incorporates automatic marking (essential for large classes), randomised tasks to each student (reducing copying), the capacity to give credit for working (feedback on the application of theory), and the capacity to target higher order learning outcomes by requiring students to derive their answers rather than choosing them. Results and feedback from students are presented, along with technical implementation details.
Resumo:
The proportion of functional sequence in the human genome is currently a subject of debate. The most widely accepted figure is that approximately 5% is under purifying selection. In Drosophila, estimates are an order of magnitude higher, though this corresponds to a similar quantity of sequence. These estimates depend on the difference between the distribution of genomewide evolutionary rates and that observed in a subset of sequences presumed to be neutrally evolving. Motivated by the widening gap between these estimates and experimental evidence of genome function, especially in mammals, we developed a sensitive technique for evaluating such distributions and found that they are much more complex than previously apparent. We found strong evidence for at least nine well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least seven classes in an alignment of four mammals, including human. We also identified at least three rate classes in human ancestral repeats. By positing that the largest of these ancestral repeat classes is neutrally evolving, we estimate that the proportion of nonneutrally evolving sequence is 30% of human ancestral repeats and 45% of the aligned portion of the genome. However, we also question whether any of the classes represent neutrally evolving sequences and argue that a plausible alternative is that they reflect variable structure-function constraints operating throughout the genomes of complex organisms.
Resumo:
Objective To examine the prevalence of multiple types of maltreatment (MTM), potentially confounding factors and associations with depression, anxiety and self-esteem among adolescents in Viet Nam. Methods In 2006 we conducted a cross-sectional survey of 2591 students (aged 12–18 years; 52.1% female) from randomly-selected classes in eight secondary schools in urban (Hanoi) and rural (Hai Duong) areas of northern Viet Nam (response rate, 94.7%). Sequential multiple regression analyses were performed to estimate the relative influence of individual, family and social characteristics and of eight types of maltreatment, including physical, emotional and sexual abuse and physical or emotional neglect, on adolescent mental health. Findings Females reported more neglect and emotional abuse, whereas males reported more physical abuse, but no statistically significant difference was found between genders in the prevalence of sexual abuse. Adolescents were classified as having nil (32.6%), one (25.9%), two (20.7%), three (14.5%) or all four (6.3%) maltreatment types. Linear bivariate associations between MTM and depression, anxiety and low self-esteem were observed. After controlling for demographic and family factors, MTM showed significant independent effects. The proportions of the variance explained by the models ranged from 21% to 28%. Conclusion The combined influence of adverse individual and family background factors and of child maltreatment upon mental health in adolescents in Viet Nam is consistent with research in non-Asian countries. Emotional abuse was strongly associated with each health indicator. In Asian communities where child abuse is often construed as severe physical violence, it is important to emphasize the equally pernicious effects of emotional maltreatment.
Resumo:
We have previously reported the use of a novel mini-sequencing protocol for detection of the factor V Leiden variant, the first nucleotide change (FNC) technology. This technology is based on a single nucleotide extension of a primer, which is hybridized immediately adjacent to the site of mutation. The extended nucleotide that carries a reporter molecule (fluorescein) has the power to discriminate the genotype at the site of mutation. More recently, the prothrombin 20210 and thermolabile methylene tetrahydrofolate reductase (MTHFR) 677 variants have been identified as possible risk factors associated with thrombophilia. This study describes the use of the FNC technology in a combined assay to detect factor V, prothrombin and MTHFR variants in a population of Australian blood donors, and describes the objective numerical methodology used to determine genotype cut-off values for each genetic variation. Using FNC to test 500 normal blood donors, the incidence of Factor V Leiden was 3.6% (all heterozygous), that of prothrombin 20210 was 2.8% (all heterozygous) and that of MTHFR was 10% (homozygous). The combined FNC technology offers a simple, rapid, automatable DNA-based test for the detection of these three important mutations that are associated with familial thrombophilia. (C) 2000 Lippincott Williams and Wilkins.
Resumo:
Aim. This paper is a report of a study to explore rural nurses' experiences of mentoring. Background. Mentoring has recently been proposed by governments, advocates and academics as a solution to the problem for retaining rural nurses in the Australian workforce. Action in the form of mentor development workshops has changed the way that some rural nurses now construct supportive relationships as mentoring. Method. A grounded theory design was used with nine rural nurses. Eleven semi-structured interviews were conducted in various states of Australia during 2004-2005. Situational analysis mapping techniques and frame analysis were used in combination with concurrent data generation and analysis and theoretical sampling. Findings. Experienced rural nurses cultivate novices through supportive mentoring relationships. The impetus for such relationships comes from their own histories of living and working in the same community, and this was termed 'live my work'. Rural nurses use multiple perspectives of self in order to manage their interactions with others in their roles as community members, consumers of healthcare services and nurses. Personal strategies adapted to local context constitute the skills that experienced rural nurses pass-on to neophyte rural nurses through mentoring, while at the same time protecting them through troubleshooting and translating local cultural norms. Conclusion. Living and working in the same community creates a set of complex challenges for novice rural nurses that are better faced with a mentor in place. Thus, mentoring has become an integral part of experienced rural nurses' practice to promote staff retention. © 2007 The Authors.
Resumo:
Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.
Resumo:
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion’s dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.
Resumo:
Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.