984 resultados para Logic Programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While it is commonly accepted that computability on a Turing machine in polynomial time represents a correct formalization of the notion of a feasibly computable function, there is no similar agreement on how to extend this notion on functionals, that is, what functionals should be considered feasible. One possible paradigm was introduced by Mehlhorn, who extended Cobham's definition of feasible functions to type 2 functionals. Subsequently, this class of functionals (with inessential changes of the definition) was studied by Townsend who calls this class POLY, and by Kapron and Cook who call the same class basic feasible functionals. Kapron and Cook gave an oracle Turing machine model characterisation of this class. In this article, we demonstrate that the class of basic feasible functionals has recursion theoretic properties which naturally generalise the corresponding properties of the class of feasible functions, thus giving further evidence that the notion of feasibility of functionals mentioned above is correctly chosen. We also improve the Kapron and Cook result on machine representation.Our proofs are based on essential applications of logic. We introduce a weak fragment of second order arithmetic with second order variables ranging over functions from NN which suitably characterises basic feasible functionals, and show that it is a useful tool for investigating the properties of basic feasible functionals. In particular, we provide an example how one can extract feasible programs from mathematical proofs that use nonfeasible functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes Electronic Blocks, a new robot construction element designed to allow children as young as age three to build and program robotic structures. The Electronic Blocks encapsulate input, output and logic concepts in tangible elements that young children can use to create a wide variety of physical agents. The children are able to determine the behavior of these agents by the choice of blocks and the manner in which they are connected. The Electronic Blocks allow children without any knowledge of mechanical design or computer programming to create and control physically embodied robots. They facilitate the development of technological capability by enabling children to design, construct, explore and evaluate dynamic robotics systems. A study of four and five year-old children using the Electronic Blocks has demonstrated that the interface is well suited to young children. The complexity of the implementation is hidden from the children, leaving the children free to autonomously explore the functionality of the blocks. As a consequence, children are free to move their focus beyond the technology. Instead they are free to focus on the construction process, and to work on goals related to the creation of robotic behaviors and interactions. As a resource for robot building, the blocks have proved to be effective in encouraging children to create robot structures, allowing children to design and program robot behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2001 the School of Information Technology and Electrical Engineering (ITEE) at the University of Queensland has been involved in RoboCupJunior activities aimed at providing children with the Robot building and programming knowledge they need to succeed in RoboCupJunior competitions. These activities include robotics workshops, the organization of the State-wide RoboCupJunior competition, and consultation on all matters robotic with schools and government organizations. The activities initiated by ITEE have succeeded in providing children with the scaffolding necessary to become competent, independent robot builders and programmers. Results from state, national and international competitions suggest that many of the children who participate in the activities supported by ITEE are subsequently able to purpose- build robots to effectively compete in RoboCupJunior competitions. As a result of the scaffolding received within workshops children are able to think deeply and creatively about their designs, and to critique their designs in order to make the best possible creation in an effort to win.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Component software has many benefits, most notably increased software re-use; however, the component software process places heavy burdens on programming language technology, which modern object-oriented programming languages do not address. In particular, software components require specifications that are both sufficiently expressive and sufficiently abstract, and, where possible, these specifications should be checked formally by the programming language. This dissertation presents a programming language called Mentok that provides two novel programming language features enabling improved specification of stateful component roles. Negotiable interfaces are interface types extended with protocols, and allow specification of changing method availability, including some patterns of out-calls and re-entrance. Type layers are extensions to module signatures that allow specification of abstract control flow constraints through the interfaces of a component-based application. Development of Mentok's unique language features included creation of MentokC, the Mentok compiler, and formalization of key properties of Mentok in mini-languages called MentokP and MentokL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic control at road junctions is one of the major concerns in most metropolitan cities. Controllers of various approaches are available and the required control action is the effective green-time assigned to each traffic stream within a traffic-light cycle. The application of fuzzy logic provides the controller with the capability to handle uncertain natures of the system, such as drivers’ behaviour and random arrivals of vehicles. When turning traffic is allowed at the junction, the number of phases in the traffic-light cycle increases. The additional input variables inevitably complicate the controller and hence slow down the decision-making process, which is critical in this real-time control problem. In this paper, a hierarchical fuzzy logic controller is proposed to tackle this traffic control problem at a 2-way road junction with turning traffic. The two levels of fuzzy logic controllers devise the minimum effective green-time and fine-tune it respectively at each phase of a traffic-light cycle. The complexity of the controller at each level is reduced with smaller rule-set. The performance of this hierarchical controller is examined by comparison with a fixed-time controller under various traffic conditions. Substantial delay reduction has been achieved as a result and the performance and limitation of the controller will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tangible programming elements offer the dynamic and programmable properties of a computer without the complexity introduced by the keyboard, mouse and screen. This paper explores the extent to which programming skills are used by children during interactions with a set of tangible programming elements: the Electronic Blocks. An evaluation of the Electronic Blocks indicates that children become heavily engaged with the blocks, and learn simple programming with a minimum of adult support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic Blocks are a new programming environment, designed specifically for children aged between three and eight years. As such, the design of the Electronic Block environment is firmly based on principles of developmentally appropriate practices in early childhood education. The Electronic Blocks are physical, stackable blocks that include sensor blocks, action blocks and logic blocks. Evaluation of the Electronic Blocks with both preschool and primary school children shows that the blocks' ease of use and power of engagement have created a compelling tool for the introduction of meaningful technology education in an early childhood setting. The key to the effectiveness of the Electronic Blocks lies in an adherence to theories of development and learning throughout the Electronic Blocks design process.