976 resultados para Linked Open Data Android iOS Semantic Web Turismo Tourism
Resumo:
We describe the datos.bne.es library dataset. The dataset makes available the authority and bibliography catalogue from the Biblioteca Nacional de España (BNE, National Library of Spain) as Linked Data. The catalogue contains around 7 million authority and bibliographic records. The records in MARC 21 format were transformed to RDF and modelled using IFLA (International Federation of Library Associations) ontologies and other well-established vocabularies such as RDA (Resource Description and Access) or the Dublin Core Metadata Element Set. A tool named MARiMbA automatized the RDF generation process and the data linkage to DBpedia and other library linked data resources such as VIAF (Virtual International Authority File) or GND (Gemeinsame Normdatei, the authority dataset from the German National Library).
Resumo:
Semantic Sensor Web infrastructures use ontology-based models to represent the data that they manage; however, up to now, these ontological models do not allow representing all the characteristics of distributed, heterogeneous, and web-accessible sensor data. This paper describes a core ontological model for Semantic Sensor Web infrastructures that covers these characteristics and that has been built with a focus on reusability. This ontological model is composed of different modules that deal, on the one hand, with infrastructure data and, on the other hand, with data from a specific domain, that is, the coastal flood emergency planning domain. The paper also presents a set of guidelines, followed during the ontological model development, to satisfy a common set of requirements related to modelling domain-specific features of interest and properties. In addition, the paper includes the results obtained after an exhaustive evaluation of the developed ontologies along different aspects (i.e., vocabulary, syntax, structure, semantics, representation, and context).
Resumo:
Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.
Resumo:
The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies bringing their semantic to the data being published. These ontologies should be evaluated at different stages, both during their development and their publication. As important as correctly modelling the intended part of the world to be captured in an ontology, is publishing, sharing and facilitating the (re)use of the obtained model. In this paper, 11 evaluation characteristics, with respect to publish, share and facilitate the reuse, are proposed. In particular, 6 good practices and 5 pitfalls are presented, together with their associated detection methods. In addition, a grid-based rating system is generated. Both contributions, the set of evaluation characteristics and the grid system, could be useful for ontologists in order to reuse existing LD vocabularies or to check the one being built.
Resumo:
In this demo paper we describe an iOS-based application that allows visualizing live bus transport data in Madrid from static and streaming RDF endpoints, reusing the Web services provided by the bus transport authority in the city and wrapping them using SPARQLStream
Resumo:
One of the leading motivations behind the multilingual semantic web is to make resources accessible digitally in an online global multilingual context. Consequently, it is fundamental for knowledge bases to find a way to manage multilingualism and thus be equipped with those procedures for its conceptual modelling. In this context, the goal of this paper is to discuss how common-sense knowledge and cultural knowledge are modelled in a multilingual framework. More particularly, multilingualism and conceptual modelling are dealt with from the perspective of FunGramKB, a lexico-conceptual knowledge base for natural language understanding. This project argues for a clear division between the lexical and the conceptual dimensions of knowledge. Moreover, the conceptual layer is organized into three modules, which result from a strong commitment towards capturing semantic knowledge (Ontology), procedural knowledge (Cognicon) and episodic knowledge (Onomasticon). Cultural mismatches are discussed and formally represented at the three conceptual levels of FunGramKB.
Resumo:
WWW is a huge, open, heterogeneous system, however its contents data is mainly human oriented. The Semantic Web needs to assure that data is readable and “understandable” to intelligent software agents, though the use of explicit and formal semantics. Ontologies constitute a privileged artifact for capturing the semantic of the WWW data. Temporal and spatial dimensions are transversal to the generality of knowledge domains and therefore are fundamental for the reasoning process of software agents. Representing temporal/spatial evolution of concepts and their relations in OWL (W3C standard for ontologies) it is not straightforward. Although proposed several strategies to tackle this problem but there is still no formal and standard approach. This work main goal consists of development of methods/tools to support the engineering of temporal and spatial aspects in intelligent systems through the use of OWL ontologies. An existing method for ontology engineering, Fonte was used as framework for the development of this work. As main contributions of this work Fonte was re-engineered in order to: i) support the spatial dimension; ii) work with OWL Ontologies; iii) and support the application of Ontology Design Patterns. Finally, the capabilities of the proposed approach were demonstrated by engineering time and space in a demo ontology about football.
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfilment of the requirements for the degree of Master in Computer Science
Resumo:
Master’s Degree Dissertation
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Based in internet growth, through semantic web, together with communication speed improvement and fast development of storage device sizes, data and information volume rises considerably every day. Because of this, in the last few years there has been a growing interest in structures for formal representation with suitable characteristics, such as the possibility to organize data and information, as well as the reuse of its contents aimed for the generation of new knowledge. Controlled Vocabulary, specifically Ontologies, present themselves in the lead as one of such structures of representation with high potential. Not only allow for data representation, as well as the reuse of such data for knowledge extraction, coupled with its subsequent storage through not so complex formalisms. However, for the purpose of assuring that ontology knowledge is always up to date, they need maintenance. Ontology Learning is an area which studies the details of update and maintenance of ontologies. It is worth noting that relevant literature already presents first results on automatic maintenance of ontologies, but still in a very early stage. Human-based processes are still the current way to update and maintain an ontology, which turns this into a cumbersome task. The generation of new knowledge aimed for ontology growth can be done based in Data Mining techniques, which is an area that studies techniques for data processing, pattern discovery and knowledge extraction in IT systems. This work aims at proposing a novel semi-automatic method for knowledge extraction from unstructured data sources, using Data Mining techniques, namely through pattern discovery, focused in improving the precision of concept and its semantic relations present in an ontology. In order to verify the applicability of the proposed method, a proof of concept was developed, presenting its results, which were applied in building and construction sector.
Resumo:
Aquest projecte s'emmarca dintre la idea de la Web Semàntica. A la primera part introdueix progressivament al tema de la Web Semàntica fins arribar a establir la necessitat de tenir SGBDs. La segon part explota algun dels SGBDs estudiats per realitzar una aplicació web que permeti mostrar alguna aplicació de la Web Semàntica.
Resumo:
En aquest treball s'explica el concepte de Web Semàntica, junt amb la seva estructura i els diferents termes relacionats amb aquesta idea. A més, es fa especial atenció al paper dels sistemes gestors de bases de dades en aquest camp, tenint en compte sobretot el nivell de compatibilitat que ofereixen aquests per a tracta dades en notació RDF, basada en el llenguatge XML.
Resumo:
Aquest treball, basant-se en una aplicació concreta d'aquest concepte de web semàntic anomenada anotació semàntica de pàgines web, presenta els conceptes i els elements propis, com ara les ontologies i els llenguatges semàntics, i també un cas pràctic de disseny i desenvolupament d'una ontologia i una anotació semàntica de les pàgines d'un web a partir de l'ontologia creada.
Resumo:
Análisis, diseño y desarrollo de un aplicativo que a partir de un fichero con formato "PGN" genere dos tipos distintos de fichero, el primero será una página HTML con contenido gráfico que represente las posiciones, soluciones y datos complementarios de cada posición, y el segundo fichero contendrá una base de conocimiento en formato OWL, ontología compuesta de clases y propiedades, previamente definidas con Protégé, y de individuos que serán creados dinámicamente a partir de la información contenida en el fichero PGN de entrada.