917 resultados para Least-squares technique


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we implement estimating procedures in order to estimate threshold parameters for the continuous time threshold models driven by stochastic di®erential equations. The ¯rst procedure is based on the EM (expectation-maximization) algorithm applied to the threshold model built from the Brownian motion with drift process. The second procedure mimics one of the fundamental ideas in the estimation of the thresholds in time series context, that is, conditional least squares estimation. We implement this procedure not only for the threshold model built from the Brownian motion with drift process but also for more generic models as the ones built from the geometric Brownian motion or the Ornstein-Uhlenbeck process. Both procedures are implemented for simu- lated data and the least squares estimation procedure is also implemented for real data of daily prices from a set of international funds. The ¯rst fund is the PF-European Sus- tainable Equities-R fund from the Pictet Funds company and the second is the Parvest Europe Dynamic Growth fund from the BNP Paribas company. The data for both funds are daily prices from the year 2004. The last fund to be considered is the Converging Europe Bond fund from the Schroder company and the data are daily prices from the year 2005.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the cross-cultural validity of the Demand-Control Questionnaire, comparing the original Swedish questionnaire with the Brazilian version. METHODS We compared data from 362 Swedish and 399 Brazilian health workers. Confirmatory and exploratory factor analyses were performed to test structural validity, using the robust weighted least squares mean and variance-adjusted (WLSMV) estimator. Construct validity, using hypotheses testing, was evaluated through the inspection of the mean score distribution of the scale dimensions according to sociodemographic and social support at work variables. RESULTS The confirmatory and exploratory factor analyses supported the instrument in three dimensions (for Swedish and Brazilians): psychological demands, skill discretion and decision authority. The best-fit model was achieved by including an error correlation between work fast and work intensely (psychological demands) and removing the item repetitive work (skill discretion). Hypotheses testing showed that workers with university degree had higher scores on skill discretion and decision authority and those with high levels of Social Support at Work had lower scores on psychological demands and higher scores on decision authority. CONCLUSIONS The results supported the equivalent dimensional structures across the two culturally different work contexts. Skill discretion and decision authority formed two distinct dimensions and the item repetitive work should be removed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Matemática, especialidade de Estatística, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durante as últimas décadas observou-se o crescimento da importância das avaliações fornecidas pelas agências de rating, sendo este um fator decisivo na tomada de decisão dos investidores. Também os emitentes de dívida são largamente afetados pelas alterações das classificações atribuídas por estas agências. Esta investigação pretende, por um lado, compreender se estas agências têm poder para conseguirem influenciar a evolução da dívida pública e qual o seu papel no mercado financeiro. Por outro, pretende compreender quais os fatores determinantes da dívida pública portuguesa, bem como a realização de uma análise por percentis com o objetivo de lhe atribuir um rating. Para a análise dos fatores que poderão influenciar a dívida pública, a metodologia utilizada é uma regressão linear múltipla estimada através do Método dos Mínimos Quadrados (Ordinary Least Squares – OLS), em que num cenário inicial era composta por onze variáveis independentes, sendo a dívida pública a variável dependente, para um período compreendido entre 1996 e 2013. Foram realizados vários testes ao modelo inicial, com o objetivo de encontrar um modelo que fosse o mais explicativo possível. Conseguimos ainda identificar uma relação inversa entre o rating atribuído por estas agências e a evolução da dívida pública, no sentido em que para períodos em que o rating desce, o crescimento da dívida é mais acentuado. Não nos foi, no entanto, possível atribuir um rating à dívida pública através de uma análise de percentis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To determine whether the slope of a maximal bronchial challenge test (in which FEV1 falls by over 50%) could be extrapolated from a standard bronchial challenge test (in which FEV1 falls up to 20%), 14 asthmatic children performed a single maximal bronchial challenge test with methacholin(dose range: 0.097–30.08 umol) by the dosimeter method. Maximal dose-response curves were included according to the following criteria: (1) at least one more dose beyond a FEV1 ù 20%; and (2) a MFEV1 ù 50%. PD20 FEV1 was calculated, and the slopes of the early part of the dose-response curve (standard dose-response slopes) and of the entire curve (maximal dose-response slopes) were calculated by two methods: the two-point slope (DRR) and the least squares method (LSS) in % FEV1 × umol−1. Maximal dose-response slopes were compared with the corresponding standard dose-response slopes by a paired Student’s t test after logarithmic transformation of the data; the goodness of fit of the LSS was also determined. Maximal dose-response slopes were significantly different (p < 0.0001) from those calculated on the early part of the curve: DRR20% (91.2 ± 2.7 FEV1% z umol−1)was 2.88 times higher than DRR50% (31.6 ± 3.4 DFEV1% z umol−1), and the LSS20% (89.1 ± 2.8% FEV1 z umol−1) was 3.10 times higher than LSS 50% (28.8 ± 1.5%FEV1 z umol−1). The goodness of fit of LSS 50% was significant in all cases, whereas LSS 20% failed to be significant in one. These results suggest that maximal dose-response slopes cannot be predicted from the data of standard bronchial challenge tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação