764 resultados para Learning to learn
Resumo:
Learning is predicted to affect manifold ecological and evolutionary processes, but the extent to which animals rely on learning in nature remains poorly known, especially for short-lived non-social invertebrates. This is in particular the case for Drosophila, a favourite laboratory system to study molecular mechanisms of learning. Here we tested whether Drosophila melanogaster use learned information to choose food while free-flying in a large greenhouse emulating the natural environment. In a series of experiments flies were first given an opportunity to learn which of two food odours was associated with good versus unpalatable taste; subsequently, their preference for the two odours was assessed with olfactory traps set up in the greenhouse. Flies that had experienced palatable apple-flavoured food and unpalatable orange-flavoured food were more likely to be attracted to the odour of apple than flies with the opposite experience. This was true both when the flies first learned in the laboratory and were then released and recaptured in the greenhouse, and when the learning occurred under free-flying conditions in the greenhouse. Furthermore, flies retained the memory of their experience while exploring the greenhouse overnight in the absence of focal odours, pointing to the involvement of consolidated memory. These results support the notion that even small, short lived insects which are not central-place foragers make use of learned cues in their natural environments.
Resumo:
It has been convincingly argued that computer simulation modeling differs from traditional science. If we understand simulation modeling as a new way of doing science, the manner in which scientists learn about the world through models must also be considered differently. This article examines how researchers learn about environmental processes through computer simulation modeling. Suggesting a conceptual framework anchored in a performative philosophical approach, we examine two modeling projects undertaken by research teams in England, both aiming to inform flood risk management. One of the modeling teams operated in the research wing of a consultancy firm, the other were university scientists taking part in an interdisciplinary project experimenting with public engagement. We found that in the first context the use of standardized software was critical to the process of improvisation, the obstacles emerging in the process concerned data and were resolved through exploiting affordances for generating, organizing, and combining scientific information in new ways. In the second context, an environmental competency group, obstacles were related to the computer program and affordances emerged in the combination of experience-based knowledge with the scientists' skill enabling a reconfiguration of the mathematical structure of the model, allowing the group to learn about local flooding.
Resumo:
Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.
Resumo:
This report compares policy learning processes in 11 European countries. Based on the country reports that were produced by the national teams of the INSPIRES project, this paper develops an argument that connects problem pressure and politicization to learning in different labor market innovations. In short, we argue that learning efforts are most likely to impact on policy change if there is a certain problem pressure that clearly necessitates political action. On the other hand, if problem pressure is very low, or so high that governments need to react immediately, chances are low that learning impacts on policy change. The second part of our argument contends that learning impacts on policy change especially if a problem is not very politicized, i.e. there are no main conflicts concerning a reform, because then, solutions are wound up in the search for a compromise. Our results confirm our first hypothesis regarding the connection between problem pressure and policy learning. Governments learn indeed up to a certain degree of problem pressure. However, once political action becomes really urgent, i.e. in anti-crisis policies, there is no time and room for learning. On the other hand, learning occurred independently from the politicization of problem. In fact, in countries that have a consensual political system, learning occurred before the decision on a reform, whereas in majoritarian systems, learning happened after the adoption of a policy during the process of implementation.
Resumo:
The creation of the European Higher Education Area has meant a number of significant changes to the educational structures of the university community. In particular, the new system of European credits has generated the need for innovation in the design of curricula and teaching methods. In this paper, we propose debating as a classroom tool that can help fulfill these objectives by promoting an active student role in learning. To demonstrate the potential of this tool, a classroom experiment was conducted in a bachelor’s degree course in Industrial Economics -Regulation and Competition-, involving a case study in competition policy and incorporating the techniques of a conventional debate -presentation of standpoints, turns, right to reply and summing up-. The experiment yielded gains in student attainment and positive assessments of the subject. In conclusion, the incorporation of debating activities helps students to acquire the skills, be they general or specific, required to graduate successfully in Economics.
Resumo:
The fact that individuals learn can change the relationship between genotype and phenotype in the population, and thus affect the evolutionary response to selection. Here we ask how male ability to learn from female response affects the evolution of a novel male behavioral courtship trait under pre-existing female preference (sensory drive). We assume a courtship trait which has both a genetic and a learned component, and a two-level female response to males. With individual-based simulations we show that, under this scenario, learning generally increases the strength of selection on the genetic component of the courtship trait, at least when the population genetic mean is still low. As a consequence, learning not only accelerates the evolution of the courtship trait, but also enables it when the trait is costly, which in the absence of learning results in an adaptive valley. Furthermore, learning can enable the evolution of the novel trait in the face of gene flow mediated by immigration of males that show superior attractiveness to females based on another, non-heritable trait. However, rather than increasing monotonically with the speed of learning, the effect of learning on evolution is maximized at intermediate learning rates. This model shows that, at least under some scenarios, the ability to learn can drive the evolution of mating behaviors through a process equivalent to Waddington's genetic assimilation.
Resumo:
Objective To investigate the process of learning on human resource management in the radiology residency program at Escola Paulista de Medicina – Universidade Federal de São Paulo, aiming at improving radiologists' education. Materials and Methods Exploratory study with a quantitative and qualitative approach developed with the faculty staff, preceptors and residents of the program, utilizing a Likert questionnaire (46), taped interviews (18), and categorization based on thematic analysis. Results According to 71% of the participants, residents have clarity about their role in the development of their activities, and 48% said that residents have no opportunity to learn how to manage their work in a multidisciplinary team. Conclusion Isolation at medical records room, little interactivity between sectors with diversified and fixed activities, absence of a previous culture and lack of a training program on human resources management may interfere in the development of skills for the residents' practice. There is a need to review objectives of the medical residency in the field of radiology, incorporating, whenever possible, the commitment to the training of skills related to human resources management thus widening the scope of abilities of the future radiologists.
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
Network virtualisation is considerably gaining attentionas a solution to ossification of the Internet. However, thesuccess of network virtualisation will depend in part on how efficientlythe virtual networks utilise substrate network resources.In this paper, we propose a machine learning-based approachto virtual network resource management. We propose to modelthe substrate network as a decentralised system and introducea learning algorithm in each substrate node and substrate link,providing self-organization capabilities. We propose a multiagentlearning algorithm that carries out the substrate network resourcemanagement in a coordinated and decentralised way. The taskof these agents is to use evaluative feedback to learn an optimalpolicy so as to dynamically allocate network resources to virtualnodes and links. The agents ensure that while the virtual networkshave the resources they need at any given time, only the requiredresources are reserved for this purpose. Simulations show thatour dynamic approach significantly improves the virtual networkacceptance ratio and the maximum number of accepted virtualnetwork requests at any time while ensuring that virtual networkquality of service requirements such as packet drop rate andvirtual link delay are not affected.
Resumo:
Feedback-related negativity (FRN) is an ERP component that distinguishes positive from negative feedback. FRN has been hypothesized to be the product of an error signal that may be used to adjust future behavior. In addition, associative learning models assume that the trial-to-trial learning of cueoutcome mappings involves the minimization of an error term. This study evaluated whether FRN is a possible electrophysiological correlate of this error term in a predictive learning task where human subjects were asked to learn different cueoutcome relationships. Specifically, we evaluated the sensitivity of the FRN to the course of learning when different stimuli interact or compete to become a predictor of certain outcomes. Importantly, some of these cues were blocked by more informative or predictive cues (i.e., the blocking effect). Interestingly, the present results show that both learning and blocking affect the amplitude of the FRN component. Furthermore, independent analyses of positive and negative feedback event-related signals showed that the learning effect was restricted to the ERP component elicited by positive feedback. The blocking test showed differences in the FRN magnitude between a predictive and a blocked cue. Overall, the present results show that ERPs that are related to feedback processing correspond to the main predictions of associative learning models. ■
Resumo:
This paper stresses the importance of developing mathematical thought in young children based on everyday contexts, since these are meaningful learning situations with an interdisciplinary, globalised focus. The first part sets out the framework of reference that lays the theoretical foundations for these kinds of educational practices. The second part gives some teaching orientations for work based on everyday contexts. It concludes with the presentation of the activity 'We’re off to the cinema to learn mathematics!'
Resumo:
The skill of programming is a key asset for every computer science student. Many studies have shown that this is a hard skill to learn and the outcomes of programming courses have often been substandard. Thus, a range of methods and tools have been developed to assist students’ learning processes. One of the biggest fields in computer science education is the use of visualizations as a learning aid and many visualization based tools have been developed to aid the learning process during last few decades. Studies conducted in this thesis focus on two different visualizationbased tools TRAKLA2 and ViLLE. This thesis includes results from multiple empirical studies about what kind of effects the introduction and usage of these tools have on students’ opinions and performance, and what kind of implications there are from a teacher’s point of view. The results from studies in this thesis show that students preferred to do web-based exercises, and felt that those exercises contributed to their learning. The usage of the tool motivated students to work harder during their course, which was shown in overall course performance and drop-out statistics. We have also shown that visualization-based tools can be used to enhance the learning process, and one of the key factors is the higher and active level of engagement (see. Engagement Taxonomy by Naps et al., 2002). The automatic grading accompanied with immediate feedback helps students to overcome obstacles during the learning process, and to grasp the key element in the learning task. These kinds of tools can help us to cope with the fact that many programming courses are overcrowded with limited teaching resources. These tools allows us to tackle this problem by utilizing automatic assessment in exercises that are most suitable to be done in the web (like tracing and simulation) since its supports students’ independent learning regardless of time and place. In summary, we can use our course’s resources more efficiently to increase the quality of the learning experience of the students and the teaching experience of the teacher, and even increase performance of the students. There are also methodological results from this thesis which contribute to developing insight into the conduct of empirical evaluations of new tools or techniques. When we evaluate a new tool, especially one accompanied with visualization, we need to give a proper introduction to it and to the graphical notation used by tool. The standard procedure should also include capturing the screen with audio to confirm that the participants of the experiment are doing what they are supposed to do. By taken such measures in the study of the learning impact of visualization support for learning, we can avoid drawing false conclusion from our experiments. As computer science educators, we face two important challenges. Firstly, we need to start to deliver the message in our own institution and all over the world about the new – scientifically proven – innovations in teaching like TRAKLA2 and ViLLE. Secondly, we have the relevant experience of conducting teaching related experiment, and thus we can support our colleagues to learn essential know-how of the research based improvement of their teaching. This change can transform academic teaching into publications and by utilizing this approach we can significantly increase the adoption of the new tools and techniques, and overall increase the knowledge of best-practices. In future, we need to combine our forces and tackle these universal and common problems together by creating multi-national and multiinstitutional research projects. We need to create a community and a platform in which we can share these best practices and at the same time conduct multi-national research projects easily.
Resumo:
This study evaluates the use of role-playing games (RPGs) as a methodological approach for teaching cellular biology, assessing student satisfaction, learning outcomes, and retention of acquired knowledge. First-year undergraduate medical students at two Brazilian public universities attended either an RPG-based class (RPG group) or a lecture (lecture-based group) on topics related to cellular biology. Pre- and post-RPG-based class questionnaires were compared to scores in regular exams and in an unannounced test one year later to assess students' attitudes and learning. From the 230 students that attended the RPG classes, 78.4% responded that the RPG-based classes were an effective tool for learning; 55.4% thought that such classes were better than lectures but did not replace them; and 81% responded that they would use this method. The lecture-based group achieved a higher grade in 1 of 14 regular exam questions. In the medium-term evaluation (one year later), the RPG group scored higher in 2 of 12 questions. RPG classes are thus quantitatively as effective as formal lectures, are well accepted by students, and may serve as educational tools, giving students the chance to learn actively and potentially retain the acquired knowledge more efficiently.
Resumo:
In the fierce competition of today‟s business world an organization‟s capacity to learn maybe its only competitive advantage. This research aims at increasing the understanding on how organizational learning from the customer happens in technology companies. In doing so it provides a synthesized definition of organizational learning and investigates processes of organizational learning within technology companies. A qualitative research method and in-depth interviews with different sized high technology companies, as applied here, enables in-depth study of the learning processes. Research contributes to the understanding of what type of knowledge firms acquire, how new knowledge is transferred and used in a learning firm‟s routines and processes. Research findings show that SMEs and large size companies also, depending on their position in the software value chain, consider different knowledge types as most important and that they use different learning methods to acquire knowledge from their customers.