648 resultados para Kyoto
Resumo:
Multiple extracellular mitogens are involved in the pathogenesis of proliferative forms of glomerulonephritis (GN), In vitro studies demonstrate the pivotal role of extracellular signal-regulated kinase (ERK) in the regulation of cellular proliferation in response to extracellular mitogens. In this study, we examined whether this kinase, as a convergence point of mitogenic stimuli, is activated in proliferative GN in vivo, Two different proliferative forms of anti-glomerular basal membrane (GEM) GN in rats were induced and whole cortical tissue as well as isolated glomeruli examined using kinase activity assays and Western blot analysis, Administration of rabbit anti-rat GEM serum to rats, preimmunized with rabbit IgG, induced an accelerated crescentic anti-GEM GN. A significant increase in cortical, and more dramatically glomerular ERK activity was detected at 1, 3, and 7 d after induction of GN, Immunization of Wistar-Kyoto rats with bovine GEM also induced a crescentic anti-GBM GN with an increase of renal cortical ERK activity after 4, 6, and 8 wk, ERK is phosphorylated and activated by the MAP kinase/ERK kinase (MEK), We detected a significant increase in the expression of glomerular MEK in the accelerated form of anti-GEM CN, providing a possible mechanism of long-term activation of ERK in this disease model, In contrast to ERK, activation of stress-activated protein kinase was only detectable at early stages of proliferative GN, indicating these related kinases to serve distinct roles in the pathogenesis of GN, Our observations point to ERK as a putative mediator of the proliferative response to immune injury in GN and suggest that upregulation of MEK is involved in the long-term regulation of ERK in vivo.
Resumo:
The Kyoto Protocol and the European Energy Performance of Buildings Directive put an onus on governments
and organisations to lower carbon footprint in order to contribute towards reducing global warming. A key
parameter to be considered in buildings towards energy and cost savings is its indoor lighting that has a major
impact on overall energy usage and Carbon Dioxide emissions. Lighting control in buildings using Passive
Infrared sensors is a reliable and well established approach; however, the use of only Passive Infrared does not
offer much savings towards reducing carbon, energy, and cost. Accurate occupancy monitoring information can
greatly affect a building’s lighting control strategy towards a greener usage. This paper presents an approach for
data fusion of Passive Infrared sensors and passive Radio Frequency Identification (RFID) based occupancy
monitoring. The idea is to have efficient, need-based, and reliable control of lighting towards a green indoor
environment, all while considering visual comfort of occupants. The proposed approach provides an estimated
13% electrical energy savings in one open-plan office of a University building in one working day. Practical
implementation of RFID gateways provide real-world occupancy profiling data to be fused with Passive
Infrared sensing towards analysis and improvement of building lighting usage and control.
Resumo:
For modern FPGA, implementation of memory intensive processing applications such as high end image and video processing systems necessitates manual design of complex multilevel memory hierarchies incorporating off-chip DDR and onchip BRAM and LUT RAM. In fact, automated synthesis of multi-level memory hierarchies is an open problem facing high level synthesis technologies for FPGA devices. In this paper we describe the first automated solution to this problem.
By exploiting a novel dataflow application modelling dialect, known as Valved Dataflow, we show for the first time how, not only can such architectures be automatically derived, but also that the resulting implementations support real-time processing for current image processing application standards such as H.264. We demonstrate the viability of this approach by reporting the performance and cost of hierarchies automatically generated for Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications on Virtex-5 FPGA.
Resumo:
In this paper we demonstrate a simple and novel illumination model that can be used for illumination invariant facial recognition. This model requires no prior knowledge of the illumination conditions and can be used when there is only a single training image per-person. The proposed illumination model separates the effects of illumination over a small area of the face into two components; an additive component modelling the mean illumination and a multiplicative component, modelling the variance within the facial area. Illumination invariant facial recognition is performed in a piecewise manner, by splitting the face image into blocks, then normalizing the illumination within each block based on the new lighting model. The assumptions underlying this novel lighting model have been verified on the YaleB face database. We show that magnitude 2D Fourier features can be used as robust facial descriptors within the new lighting model. Using only a single training image per-person, our new method achieves high (in most cases 100%) identification accuracy on the YaleB, extended YaleB and CMU-PIE face databases.
Resumo:
This paper investigates a wavelet-based damage detection approach for bridge structures. By analysing the continuous wavelet transform of the vehicle response, the approach aims to identify changes in the bridge response which may indicate the existence of damage. A numerical vehicle-bridge interaction model is used in simulations as part of a sensitivity study. Furthermore, a laboratory experiment is carried out to investigate the effects of varying vehicle configuration, speed and bridge damping on the ability of the vehicle to detect changes in the bridge response. The accelerations of the vehicle and bridge are processed using a continuous wavelet transform, allowing time-frequency analysis to be carried out on the responses of the laboratory vehicle-bridge interaction system. Results indicate the most favourable conditions for successful implementation of the approach.
Resumo:
Objective: Enhanced oxidative stress is involved in mediating the endothelial dysfunction associated with hypertension. The aim of this study was to investigate the relative contributions of pro-oxidant and anti-oxidant enzymes to the pathogenesis of endothelial dysfunction in genetic hypertension. Methods: Dilator responses to endothelium-dependent and endothelium-independent agents such as acetylcholine (ACh) and sodium nitroprusside were measured in the thoracic aortas of 28-week-old spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar Kyoto rats (WKY). The activity and expression (mRNA and protein levels) of endothelial nitric oxide synthase (eNOS), p22-phox, a membrane-bound component of NAD(P)H oxidase, and antioxidant enzymes, namely, superoxide dismutases (CuZn- and Mn-SOD), catalase and glutathione peroxidase (GPx), were also investigated in aortic rings. Results: Relaxant responses to ACh were attenuated in phenylephrine-precontracted SHR aortic rings, despite a 2-fold increase in eNOS expression and activity. Although the activity and/or expression of SODs, NAD(P)H oxidase (p22-phox) and GPx were elevated in SHR aorta, catalase activity and expression remained unchanged compared to WKY. Pretreatment of SHR aortic rings with the inhibitor of xanthine oxidase, allopurinol, and the inhibitor of cyclooxygenase, indomethacin, significantly potentiated ACh-induced relaxation. Pretreatment of SHR rings with catalase and Tiron, a superoxide anion (O) scavenger, increased the relaxant responses to the levels observed in WKY rings whereas pyrogallol, a O -generator, abolished relaxant responses to ACh. Conclusion: These data demonstrate that dysregulation of several enzymes, resulting in oxidative stress, contributes to the pathogenesis of endothelial dysfunction in SHR and indicate that the antioxidant enzyme catalase is of particular importance in the reversal of this defect. © 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
This article takes as its starting point the potentially negative human rights implications that the effects of climate change, disasters and development practices can have on individuals and communities. It argues that key international instruments, including the post-2015 successors to the Kyoto Protocol, Hyogo Framework for Action on disaster risk reduction and the Millennium Development Goals, appear to be moving towards an express acknowledgment of the relevance of international human rights law as an important mechanism to minimise potential harms that may arise. This raises the question as to the appropriate role of the UN human rights monitoring and accountability mechanisms in identifying the relevant rights-holders and duty-bearers. The article therefore provides an examination of the linkages between climate change and international human rights law, as well as discussion of the human rights considerations and accountability mechanisms for disasters and sustainable development. The article concludes by arguing that despite differential understandings between disciplines as to the meaning of key terms such as ‘vulnerability’ and ‘resilience’, international human rights law provides a comprehensive basis for promoting international and national accountability. It follows that a greater level of coordination and coherence between the human rights approaches of the various post-2015 legal and policy frameworks is warranted as a means of promoting the dignity of those most affected by climate change, disasters and developmental activities.