925 resultados para Hydrogen fuel cell


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pt and PtSn catalysts were studied for n-butanol electro-oxidation at various temperatures. PtSn showed a higher activity towards butanol electro-oxidation compared to Pt in acidic media. The onset potential for n-butanol oxidation on PtSn is ~520 mV lower than that found on Pt, and significantly lower activation energy was found for PtSn compared with that for Pt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Com o aumento da população mundial registado nos últimos anos surgiu também uma maior procura energética. Esse aumento foi inicialmente colmatado recorrendo essencialmente a fontes de origem fóssil, pelo facto destas serem mais baratas. No entanto, essa tendência de preços baixos sofreu o primeiro abalo nos anos 70 do século passado, altura em que o preço do petróleo disparou, devido a questões políticas. Nessa altura ficou visível para os países ocidentais o quanto estes eram dependentes dos países produtores de petróleo que, em geral, são instáveis politicamente. Começou então a procura de fontes energéticas alternativas. Além da questão económica do aumento do preço dos combustíveis, existe também o problema ambiental. Os maiores responsáveis pela emissão de gases efeito estufa (GEE) são os combustíveis fósseis. Os GEE contribuem para o aquecimento global, o que origina fenómenos ambientais severos que poderão levar a mudanças climáticas significativas. As energias renováveis apresentam-se como a solução mais viável ao problema energético e ambiental que se verifica actualmente, porque permitem colmatar o aumento da procura energética de uma forma limpa e sustentável. Na sequência destes problemas surgiram nos últimos anos veículos que permitem reduzir ou mesmo eliminar o consumo de combustíveis fósseis, como os veículos híbridos eléctricos, eléctricos e a hidrogénio. Nesta dissertação analisa-se um sistema que foi pensado para ser implementado em áreas de serviço, que permite efectuar o carregamento de electric vehicles (EV) utilizando energia eléctrica de origem fotovoltaica e a produção de hidrogénio para os fuels cell electric vehicles (FCEV). É efectuada uma análise económica do sistema, uma análise ambiental e analisou-se também o impacto na redução da dependência do país em relação ao exterior, sendo ainda efectuada uma pequena análise ao sistema MOBIE. No caso dos veículos a hidrogénio, foi determinada qual seria a melhor opção em termos económicos, para a produção de hidrogénio considerando três regimes de produção: recorrendo apenas à energia eléctrica proveniente do sistema fotovoltaico, apenas à energia eléctrica da rede, ou uma combinação dos dois regimes. O sistema estudado nesta dissertação apresenta um enorme potencial a nível energético e ambiental, surgindo como alternativa para abastecer os veículos que irão permitir, no futuro, eliminar a dependência energética em relação às fontes fósseis e ao mesmo tempo diminuir a quantidade de gases efeito estufa emitidos para a atmosfera.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El incremento de la actividad humana en el último siglo y el desarrollo de tecnologías ligadas con el petróleo como vector energético, han generado efectos medioambientales adversos que aunados con las limitadas reservas mundiales de crudo y su estrecha relación con el crecimiento económico mundial ha generado presiones economías, políticas y sociales en todos los países. Esta situación ha dinamizado la investigación y desarrollo de nuevas tecnologías basadas en el hidrogeno como un nuevo vector energético tecnológicamente compatible que permita la portabilidad de energía con el menor impacto ambiental y económico a la luz de la prospectiva de consumo y la perdurabilidad energética. Este trabajo identifica las experiencias más relevantes respecto a la tecnología del hidrogeno a nivel mundial con el fin de consolidar un plan estratégico para la incorporación del hidrógeno como vector energético al portafolio productivo colombiano mediante la aplicación de un modelo que permite el análisis del nivel de integración de los sectores educativo, empresarial y gubernamental, teniendo como base los resultados del análisis estructural y análisis de actores.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel series of polyaromatic ionomers with similar equivalent weights but very different sulphonic acid distributions along the ionomer backbone has been designed and prepared. By synthetically organising the sequence-distribution so that it consists of fully defined ionic segments (containing singlets, doublets or quadruplets of sulphonic acid groups) alternating strictly with equally well-defined nonionic spacer segments, a new class of polymers which may be described as microblock ionomers has been developed. These materials exhibit very different properties and morphologies from analogous randomly substituted systems. Progressively extending the nonionic spacer length in the repeat unit (maintaining a constant equivalent weight by increasing the degree of sulphonation. of the ionic segment) leads to an increasing degree of nanophase separation between hydrophilic and hydrophobic domains in these materials. Membranes cast from ionomers with the more highly phase-separated morphologies show significantly higher onset temperatures for uncontrolled swelling in water. This new type of ionomer design has enabled the fabrication of swelling-resistant hydrocarbon membranes, suitable for fuel cell operation, with very much higher ion exchange capacities (>2 meq g(-1)) than those previously reported in the literature. When tested in a fuel cell at high temperature (120 degrees C) and low relative humidity (35% RH), the best microblock membrane matched the performance of Nafion 112. Moreover, comparative low load cycle testing of membrane -electrode assemblies suggests that the durability of the new membranes under conditions of high temperature and low relative humidity is superior to that of conventional perfluorinated materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proton exchange membranes (PEM’s) are currently under investigation for membrane water electrolysis (PEMWE) to deliver efficient production of the high purity hydrogen needed to supply emerging clean-energy technologies such as hydrogen fuel cells. The microblock aromatic ionomer described in this work achieves high mechanical strength in an aqueous environment as a result of its designed, biphasic morphology and displays many of the qualities required in a PEM. The new ionomer membrane thus shows good proton conductivity (63 mS cm−1 at 80 °C and 100% RH), while retaining mechanical integrity under high temperature, hydrated conditions. Testing in electrolysis has shown good energy efficiency (1.67 V at 1 A cm−2 and 80 °C, corresponding to 4 kWh/Nm3 of H2), making this ionomer a potential candidate for commercial application in PEMWE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg(-1) was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z=44); no methylformate (m/z=60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents results of studies of carbon-dispersed Pt-Rh (1:1) nanoparticles as electrocatalysts for the ethanol electro-oxidation. The influences of the crystallite size and the cell temperature on the yields of CO2, acetaldehyde and acetic acid are investigated. Metal nanoparticles were prepared by two different routes: (1) impregnation on carbon powder followed by thermal reduction on hydrogen atmosphere and (2) chemical reduction of the precursor salts. The surface active area and the electrochemical activity of the electrocatalysts were estimated by CO stripping and cyclic voltammetry in the absence and in the presence of ethanol, respectively. Reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR) and Differential Electrochemical Mass Spectrometry (DEMS). The electrochemical stripping of CO and the electrochemical ethanol oxidation were slightly faster on the Pt-Rh electrocatalysts compared to Pt/C. Also, in situ FTIR spectra and DEMS measurements evidenced that the CO2/acetaldehyde and the CO2/acetic acid ratios are higher for the Pt-Rh/C materials in relation to Pt/C. This was ascribed to the activation of the C-C bond breaking by Rh, this being more prominent for the materials with smaller crystallite sizes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, results of the interaction between methanol and oxidized platinum surfaces as studied via transients of open-circuit potentials are presented. The surface oxidation before the exposure to interaction with 0.5 M methanol was performed at different polarization times at 1.4 V vs reversible hydrogen electrode (RHE). In spite of the small changes in the initial oxide content, the increase of the pre-polarization time induces a considerable increase of the time needed for the oxide consumption during its interaction with methanol. The influence of the identity of the chemisorbing anion on the transients was also investigated in the following media: 0.1 M HClO4, 0.5 M H2SO4, and 0.5 M H2SO4 + 0.1 mM Cl-. It was observed that the transient time increases with the energy of anion chemisorption and, more importantly, without a change in the shape of the transient, meaning that free platinum sites are available at the topmost layer all over the transient and not only in the potential region of small oxide `coverage`. The impact of the pre-polarization time and the effect of anion chemisorption on the transients are rationalized in terms of the presence of surface and subsurface oxygen driven by place exchange.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Catalysts with various nickel loads were prepared on supports of ZrO2, ZrO2-Y2O3 and ZrO2-CaO, characterized by XRD and TPR and tested for activity in ethanol steam reforming. XRD of the supports identified the monoclinic crystalline phase in the ZrO2 and cubic phases in the ZrO2-Y2O3 and ZrO2-CaO supports. In the catalysts, the nickel impregnated on the supports was identified as the NiO phase. In the TPR analysis, peaks were observed showing the NiO phase having different interactions with the supports. In the catalytic tests, practically all the catalysts achieved 100% ethanol conversion, H-2 yield was near 70% and the gaseous concentrations of the other co-products varied in accordance with the equilibrium among them, affected principally by the supports. It was observed that when the ZrO2 was modified with Y2O3 and CaO, there were big changes in the CO and CO2 concentrations, which were attributed to the rise in the number of oxygen vacancies, permitting high-oxygen mobility and affecting the gaseous equilibrium. The liquid products analysis showed a low selectivity to liquid co-products during the reforming reactions. (c) 2007 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, carbon-supported Pt70Co30 nanoparticles were prepared by a polyol process using a long-chain diol as reducer (hexadecanediol) and oleic acid and oleylamine as stabilizers. Depending on the synthesis conditions, Pt70Co30/C nanocatalysts with very small particle size (1.9 +/- 0.2 nm) and narrow distribution homogeneously dispersed on the carbon support and having a high degree of alloying without the need of thermal treatments were obtained. The as-prepared catalyst presents an excellent performance as proton exchange membrane fuel cells (PEMFC) cathode material. In terms of mass activity (MA), the Pt70Co30/C electrocatalysts produced single fuel cell polarization response superior to that of commercial catalyst. To analyze alloying effects, the result of thermal treatment at low temperatures (200-400 degrees C) was also evaluated and an increase of average crystallite size and a lower degree of alloying, probably associated to cobalt oxidation, were evidenced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH 2, PtO 2, SnO 2 and IrO 2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded. © 2012 Sociedade Brasileira de Química.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)