843 resultados para Hot-spots
Resumo:
The use of a tantalum wire in hot-wire chemical vapour deposition (HWCVD) has allowed the deposition of dense nanocrystalline silicon at low filament temperatures (1550 °C). A transition in the crystalline preferential orientation from (2 2 0) to (1 1 1) was observed around 1700 °C. Transmission electron microscopy (TEM) images, together with secondary ion mass spectrometry (SIMS) measurements, suggested that no oxidation occurred in materials obtained at low filament temperature due to the high density of the tissue surrounding grain boundaries. A greater concentration of SiH 3 radicals formed at these temperatures seemed to be responsible for the higher density.
Resumo:
Which treatments are used for dysmenorrhea and with what reported outcome? A questionnaire was sent to 2400 students and apprentices, following the "retrospective treatment-outcome" method. The response rate was 22%. Most frequent treatments used are ibuprofene (53%), paracetamol (51%), hormonal contraception (40%), hot-water bottle (or hot pad) (35%), food supplements or medicinal plants (23%). Physicians only discuss a tiny proportion of dysmenorrhea treatment in their consultation, because it is mostly a matter of self-treatment, with the family as the source of information in 80% of the cases. Rather surprising because not mentioned in most official guidelines, hot-water bottle (or hot pad) appears as the treatment followed by the best reported outcome (satisfactory in 92% of users).
Resumo:
The University of Barcelona is developing a pilot-scale hot wire chemical vapor deposition (HW-CVD) set up for the deposition of nano-crystalline silicon (nc-Si:H) on 10 cm × 10 cm glass substrate at high deposition rate. The system manages 12 thin wires of 0.15-0.2 mm diameter in a very dense configuration. This permits depositing very uniform films, with inhomogeneities lower than 2.5%, at high deposition rate (1.5-3 nm/s), and maintaining the substrate temperature relatively low (250 °C). The wire configuration design, based on radicals' diffusion simulation, is exposed and the predicted homogeneity is validated with optical transmission scanning measurements of the deposited samples. Different deposition series were carried out by varying the substrate temperature, the silane to hydrogen dilution and the deposition pressure. By means of Fourier transform infrared spectroscopy (FTIR), the evolution in time of the nc-Si:H vibrational modes was monitored. Particular importance has been given to the study of the material stability against post-deposition oxidation.
Resumo:
Hot-Wire Chemical Vapor Deposition has led to microcrystalline silicon solar cell efficiencies similar to those obtained with Plasma Enhanced CVD. The light-induced degradation behavior of microcrystalline silicon solar cells critically depends on the properties of their active layer. In the regime close to the transition to amorphous growth (around 60% of amorphous volume fraction), cells incorporating an intrinsic layer with slightly higher crystalline fraction and [220] preferential orientation are stable after more than 7000 h of AM1.5 light soaking. On the contrary, solar cells whose intrinsic layer has a slightly lower crystalline fraction and random or [111] preferential orientation exhibit clear light-induced degradation effects. A revision of the efficiencies of Hot-Wire deposited microcrystalline silicon solar cells is presented and the potential efficiency of this technology is also evaluated.
Resumo:
The very usual columnar growth of nanocrystalline silicon leads to electronic transport anisotropies. Whereas electrical measurements with coplanar electrodes only provide information about the electronic transport parallel to the substrate, it is the transverse transport which determines the collection efficiency in thin film solar cells. Hence, Schottky diodes on transparent electrodes were obtained by hot-wire CVD in order to perform external quantum efficiency and surface photovoltage studies in sandwich configuration. These measurements allowed to calculate a transverse collection length, which must correlate with the photovoltaic performance of thin film solar cells. Furthermore, the density of charge trapped at localized states in the bandgap was estimated from the voltage dependence of the depletion capacitance of these rectifying contacts.
Resumo:
Amorphous silicon n-i-p solar cells have been fabricated entirely by Hot-Wire Chemical Vapour Deposition (HW-CVD) at low process temperature < 150 °C. A textured-Ag/ZnO back reflector deposited on Corning 1737F by rf magnetron sputtering was used as the substrate. Doped layers with very good conductivity and a very less defective intrinsic a-Si:H layer were used for the cell fabrication. A double n-layer (μc-Si:H/a-Si:H) and μc-Si:H p-layer were used for the cell. In this paper, we report the characterization of these layers and the integration of these layers in a solar cell fabricated at low temperature. An initial efficiency of 4.62% has been achieved for the n-i-p cell deposited at temperatures below 150 °C over glass/Ag/ZnO textured back reflector.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.
Resumo:
Polysilicon thin film transistors (TFT) are of great interest in the field of large area microelectronics, especially because of their application as active elements in flat panel displays. Different deposition techniques are in tough competition with the objective to obtain device-quality polysilicon thin films at low temperature. In this paper we present the preliminary results obtained with the fabrication of TFT deposited by hot-wire chemical vapor deposition (HWCVD). Some results concerned with the structural characterization of the material and electrical performance of the device are presented.
Resumo:
Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.
Microdoping compensation of microcrystalline silicon obtained by Hot-Wire Chemical Vapour Deposition
Resumo:
Undoped hydrogenated microcrystalline silicon was obtained by hot-wire chemical vapour deposition at different silane-to-hydrogen ratios and low temperature (<300 °C). As well as technological aspects of the deposition process, we report structural, optical and electrical characterizations of the samples that were used as the active layer for preliminary p-i-n solar cells. Raman spectroscopy indicates that changing the hydrogen dilution can vary the crystalline fraction. From electrical measurements an unwanted n-type character is deduced for this undoped material. This effect could be due to a contaminant, probably oxygen, which is also observed in capacitance-voltage measurements on Schottky structures. The negative effect of contaminants on the device was dramatic and a compensated p-i-n structure was also deposited to enhance the cell performance.
Resumo:
Los ejercicios interactivos de autoevaluación son una herramienta muy útil para fomentar el aprendizaje autónomo del estudiante. El programa Hot Potatoes permite el diseño de actividades interactivas para la evaluación formativa, con la incorporación de un sistema de retroacción que refuerza los contenidos no asimilados cuando la respuesta no es correcta. El objetivo de estudio es averiguar la opinión de los estudiantes sobre la utilización del programa Hot Potatoes. Materiales y métodos: Estudio descriptivo transversal en la promoción 2006-2007 de la asignatura Enfermería Maternal II. Los datos se recogieron a través de un cuestionario diseñado ad hoc. Resultados: Los ejercicios mejor valorados y considerados de menor dificultad fueron los de opción múltiple; los más difíciles fueron los textos desordenados y los ejercicios de rellenar huecos. Todos los estudiantes consideraron que el método motivó su interés por la asignatura y facilitó su aprendizaje. El 71% considera que el método le ha servido para adquirir conocimientos y ha sido muy útil como herramienta de estudio. Los aspectos que consideran más interesantes incluyen que: son un método de repaso y estudio, facilitan el aprendizaje de una forma amena y permiten conocer el nivel de conocimientos y corregir los errores durante el aprendizaje. Entre los aspectos que mejorarían destacan que incluirían más ejercicios y un número de preguntas más elevado. Conclusiones: El método ha tenido una buena aceptación y ha fomentado el aprendizaje autónomo. Consideramos que se trata de una estrategia de autoevaluación adecuada para la adaptación a los nuevos créditos europeos (ECTS).
Resumo:
Los ejercicios interactivos de autoevaluación son una herramienta muy útil para fomentar el aprendizaje autónomo del estudiante. El programa Hot Potatoes permite el diseño de actividades interactivas para la evaluación formativa, con la incorporación de un sistema de retroacción que refuerza los contenidos no asimilados cuando la respuesta no es correcta. El objetivo de estudio es averiguar la opinión de los estudiantes sobre la utilización del programa Hot Potatoes. Materiales y métodos: Estudio descriptivo transversal en la promoción 2006-2007 de la asignatura Enfermería Maternal II. Los datos se recogieron a través de un cuestionario diseñado ad hoc. Resultados: Los ejercicios mejor valorados y considerados de menor dificultad fueron los de opción múltiple; los más difíciles fueron los textos desordenados y los ejercicios de rellenar huecos. Todos los estudiantes consideraron que el método motivó su interés por la asignatura y facilitó su aprendizaje. El 71% considera que el método le ha servido para adquirir conocimientos y ha sido muy útil como herramienta de estudio. Los aspectos que consideran más interesantes incluyen que: son un método de repaso y estudio, facilitan el aprendizaje de una forma amena y permiten conocer el nivel de conocimientos y corregir los errores durante el aprendizaje. Entre los aspectos que mejorarían destacan que incluirían más ejercicios y un número de preguntas más elevado. Conclusiones: El método ha tenido una buena aceptación y ha fomentado el aprendizaje autónomo. Consideramos que se trata de una estrategia de autoevaluación adecuada para la adaptación a los nuevos créditos europeos (ECTS).
Resumo:
We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P < 0.05) in HOT compared to CON and HYP for the first sprint but larger (P < 0.05) sprint decrement score occurred in HYP versus HOT and CON. Compared to CON, the cumulated distance covered over the five sprints was lower (P < 0.01) in HYP but not in HOT. Irrespective of the environmental condition, significant changes occurred from the first to the fifth sprint repetitions (all three conditions compounded) in selected running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions.
Resumo:
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.