918 resultados para High throughput


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-scale gene discovery has been performed for the grass fungal endophytes Neotyphodium coenophialum, Neotyphodium lolii, and Epichloë festucae. The resulting sequences have been annotated by comparison with public DNA and protein sequence databases and using intermediate gene ontology annotation tools. Endophyte sequences have also been analysed for the presence of simple sequence repeat and single nucleotide polymorphism molecular genetic markers. Sequences and annotation are maintained within a MySQL database that may be queried using a custom web interface. Two cDNA-based microarrays have been generated from this genome resource. They permit the interrogation of 3806 Neotyphodium genes (NchipTM microarray), and 4195 Neotyphodium and 920 Epichloë genes (EndoChipTM microarray), respectively. These microarrays provide tools for high-throughput transcriptome analysis, including genome-specific gene expression studies, profiling of novel endophyte genes, and investigation of the host grass–symbiont interaction. Comparative transcriptome analysis in Neotyphodium and Epichloë was performed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources: The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2001, an incursion of Mycosphaerella fijiensis, the causal agent of black Sigatoka, was detected in Australia's largest commercial banana growing region, the Tully Banana Production Area in North Queensland. An intensive surveillance and eradication campaign was undertaken which resulted in the reinstatement of the disease-free status for black Sigatoka in 2005. This was the first time black Sigatoka had ever been eradicated from commercial plantations. The success of the eradication campaign was testament to good working relationships between scientists, growers, crop monitors, quarantine regulatory bodies and industry. A key contributing factor to the success was the deployment of a PCR-based molecular diagnostic assay, developed by the Cooperative Research Centre for Tropical Plant Protection (CRCTPP). This assay complemented morphological identification and allowed high throughput diagnosis of samples facilitating rapid decision-making during the eradication campaign. This paper describes the development and successful deployment of molecular diagnostics for black Sigatoka. Shortcomings in the gel-based assay are discussed and the advantages of highly specific real-time PCR assays, capable of differentiating between Mycosphaerella fijiensis, Mycosphaerella musicola and Mycosphaerella eumusae are outlined. Real-time assays may provide a powerful diagnostic tool for applications in surveillance, disease forecasting and resistance testing for Sigatoka leaf spot diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Black point in wheat has the potential to cost the Australian industry $A30.4 million a year. It is difficult and expensive to screen for resistance, so the aim of this study was to validate 3 previously identified quantitative trait loci (QTLs) for black point resistance on chromosomes 2B, 4A, and 3D of the wheat variety Sunco. Black point resistance data and simple sequence repeat (SSR) markers, linked to the resistance QTLs and suited to high-throughput assay, were analysed in the doubled haploid population, Batavia (susceptible) × Pelsart (resistant). Sunco and Pelsart both have Cook in their pedigree and both have the Triticum timopheevii translocation on 2B. SSR markers identified for the 3 genetic regions were gwm319 (2B, T. timopheevii translocation), wmc048 (4AS), and gwm341 (3DS). Gwm319 and wmc048 were associated with black point resistance in the validation population. Gwm341 may have an epistatic influence on the trait because when resistance alleles were present at both gwm319 and wmc048, the Batavia-derived allele at gwm341 was associated with a higher proportion of resistant lines. Data are presented showing the level of enrichment achieved for black point resistance, using 1, 2, or 3 of these molecular markers, and the number of associated discarded resistant lines. The level of population enrichment was found to be 1.83-fold with 6 of 17 resistant lines discarded when gwm319 and wmc048 were both used for selection. Interactions among the 3 QTLs appear complex and other genetic and epigenetic factors influence susceptibility to black point. Polymorphism was assessed for these markers within potential breeding material. This indicated that alternative markers to wmc048 may be required for some parental combinations. Based on these results, marker-assisted selection for the major black point resistance QTLs can increase the rate of genetic gain by improving the selection efficiency and may facilitate stacking of black point resistances from different sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the architecture of a fault-tolerant, special-purpose multi-microprocessor system for solving Partial Differential Equations (PDEs). The modular nature of the architecture allows the use of hundreds of Processing Elements (PEs) for high throughput. Its performance is evaluated by both analytical and simulation methods. The results indicate that the system can achieve high operation rates and is not sensitive to inter-processor communication delay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A semi-automated, immunomagneticcapture-reverse transcription PCR(IMC-RT-PCR) assay for the detection of three pineapple-infecting ampeloviruses, Pineapple mealybug wilt-associated virus-1, -2 and -3, is described. The assay was equivalent in sensitivity but more rapid than conventional immunocapture RT-PCR. The assay can be used either as a one- or two-step RT-PCR and allows detection of the viruses separately or together in a triplex assay from fresh, frozen or freeze-dried pineapple leaf tissue. This IMC-RT-PCR assay could be used for high throughput screening of pineapple planting propagules and could easily be modified for the detection of other RNA viruses in a range of plant species, provided suitable antibodies are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marker ordering during linkage map construction is a critical component of QTL mapping research. In recent years, high-throughput genotyping methods have become widely used, and these methods may generate hundreds of markers for a single mapping population. This poses problems for linkage analysis software because the number of possible marker orders increases exponentially as the number of markers increases. In this paper, we tested the accuracy of linkage analyses on simulated recombinant inbred line data using the commonly used Map Manager QTX (Manly et al. 2001: Mammalian Genome 12, 930-932) software and RECORD (Van Os et al. 2005: Theoretical and Applied Genetics 112, 30-40). Accuracy was measured by calculating two scores: % correct marker positions, and a novel, weighted rank-based score derived from the sum of absolute values of true minus observed marker ranks divided by the total number of markers. The accuracy of maps generated using Map Manager QTX was considerably lower than those generated using RECORD. Differences in linkage maps were often observed when marker ordering was performed several times using the identical dataset. In order to test the effect of reducing marker numbers on the stability of marker order, we pruned marker datasets focusing on regions consisting of tightly linked clusters of markers, which included redundant markers. Marker pruning improved the accuracy and stability of linkage maps because a single unambiguous marker order was produced that was consistent across replications of analysis. Marker pruning was also applied to a real barley mapping population and QTL analysis was performed using different map versions produced by the different programs. While some QTLs were identified with both map versions, there were large differences in QTL mapping results. Differences included maximum LOD and R-2 values at QTL peaks and map positions, thus highlighting the importance of marker order for QTL mapping

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basic goal of a proteomic microchip is to achieve efficient and sensitive high throughput protein analyses, automatically carrying out several measurements in parallel. A protein microchip would either detect a single protein or a large set of proteins for diagnostic purposes, basic proteome or functional analysis. Such analyses would include e.g. interactomics, general protein expression studies, detecting structural alterations or secondary modifications. Visualization of the results may occur by simple immunoreactions, general or specific labelling, or mass spectrometry. For this purpose we have manufactured chip-based proteome analysis devices that utilize the classical polymer gel electrophoresis technology to run one and two-dimensional gel electrophoresis separations of proteins in just a smaller size. In total, we manufactured three functional prototypes of which one performed a miniaturized one-dimensional gel electrophoresis (1-DE) separation, the second and third preformed two-dimensional gel electrophoresis (2-DE) separations. These microchips were successfully used to separate and characterize a set of predefined standard proteins, cell and tissue samples. Also, the miniaturized 2-DE (ComPress-2DE) chip presents a novel way of combining the 1st and 2nd dimensional separations, thus avoiding manual handling of the gels, eliminate cross-contamination, and make analyses faster and repeatability better. They all showed the advantages of miniaturization over the commercial devices; such as fast analysis, low sample- and reagent consumption, high sensitivity, high repeatability and inexpensive performance. All these instruments have the potential to be fully automated due to their easy-to-use set-up.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites. Results: We have analyzed the structural features and sequences of proteins having the hot dog fold. This study reveals that though the basic architecture of the fold is well conserved in these proteins, significant differences exist in their sequence, nature of substrate and oligomerization. Segments with certain conserved sequence motifs seem to play crucial structural and functional roles in various classes of these proteins. Conclusion: The analysis led to predictions regarding the functional classification and identification of possible catalytic residues of a number of hot dog fold-containing hypothetical proteins whose structures were determined in high throughput structural genomics projects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chromosomal alterations in leukemia have been shown to have prognostic and predictive significance and are also important minimal residual disease (MRD) markers in the follow-up of leukemia patients. Although specific oncogenes and tumor suppressors have been discovered in some of the chromosomal alterations, the role and target genes of many alterations in leukemia remain unknown. In addition, a number of leukemia patients have a normal karyotype by standard cytogenetics, but have variability in clinical course and are often molecularly heterogeneous. Cytogenetic methods traditionally used in leukemia analysis and diagnostics; G-banding, various fluorescence in situ hybridization (FISH) techniques, and chromosomal comparative genomic hybridization (cCGH), have enormously increased knowledge about the leukemia genome, but have limitations in resolution or in genomic coverage. In the last decade, the development of microarray comparative genomic hybridization (array-CGH, aCGH) for DNA copy number analysis and the SNP microarray (SNP-array) method for simultaneous copy number and loss of heterozygosity (LOH) analysis has enabled investigation of chromosomal and gene alterations genome-wide with high resolution and high throughput. In these studies, genetic alterations were analyzed in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). The aim was to screen and characterize genomic alterations that could play role in leukemia pathogenesis by using aCGH and SNP-arrays. One of the most important goals was to screen cryptic alterations in karyotypically normal leukemia patients. In addition, chromosomal changes were evaluated to narrow the target regions, to find new markers, and to obtain tumor suppressor and oncogene candidates. The work presented here shows the capability of aCGH to detect submicroscopic copy number alterations in leukemia, with information about breakpoints and genes involved in the alterations, and that genome-wide microarray analyses with aCGH and SNP-array are advantageous methods in the research and diagnosis of leukemia. The most important findings were the cryptic changes detected with aCGH in karyotypically normal AML and CLL, characterization of amplified genes in 11q marker chromosomes, detection of deletion-based mechanisms of MLL-ARHGEF12 fusion gene formation, and detection of LOH without copy number alteration in karyotypically normal AML. These alterations harbor candidate oncogenes and tumor suppressors for further studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genotyping in DNA pools reduces the cost and the time required to complete large genotyping projects. The aim of the present study was to evaluate pooling as part of a strategy for fine mapping in regions of significant linkage. Thirty-nine single nucleotide polymorphisms (SNPs) were analyzed in two genomic DNA pools of 384 individuals each and results compared with data after typing all individuals used in the pools. There were no significant differences using data from either 2 or 8 heterozygous individuals to correct frequency estimates for unequal allelic amplification. After correction, the mean difference between estimates from the genomic pool and individual allele frequencies was .033. A major limitation of the use of DNA pools is the time and effort required to carefully adjust the concentration of each individual DNA sample before mixing aliquots. Pools were also constructed by combining DNA after Multiple Displacement Amplification (MDA). The MDA pools gave similar results to pools constructed after careful DNA quantitation (mean difference from individual genotyping .040) and MDA provides a rapid method to generate pools suitable for some applications. Pools provide a rapid and cost-effective screen to eliminate SNPs that are not polymorphic in a test population and can detect minor allele frequencies as low as 1% in the pooled samples. With current levels of accuracy, pooling is best suited to an initial screen in the SNP validation process that can provide high-throughput comparisons between cases and controls to prioritize SNPs for subsequent individual genotyping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genotypic variability in root system architecture has been associated with root angle of seedlings and water extraction patterns of mature plants in a range of crops. The potential inclusion of root angle as a selection criterion in a sorghum breeding program requires (1) availability of an efficient screening method, (2) presence of genotypic variation with high heritability, and (3) an association with water extraction pattern. The aim of this study was to determine the feasibility for inclusion of nodal root angle as a selection criterion in sorghum breeding programs. A high-throughput phenotypic screen for nodal root angle in young sorghum plants has recently been developed and has been used successfully to identify significant variation in nodal root angle across a diverse range of inbred lines and a mapping population. In both cases, heritabilities for nodal root angle were high. No association between nodal root angle and plant size was detected. This implies that parental inbred lines could potentially be used to asses nodal root angle of their hybrids, although such predictability is compromised by significant interactions. To study effects of nodal root angle on water extraction patterns of mature plants, four inbred lines with contrasting nodal root angle at seedling stage were grown until at least anthesis in large rhizotrons. A consistent trend was observed that nodal root angle may affect the spatial distribution of root mass of mature plants and hence their ability to extract soil water, although genotypic differences were not significant. The potential implications of this for specific adaptation to drought stress are discussed. Results suggest that nodal root angle of young plants can be a useful selection criterion for specific drought adaptation, and could potentially be used in molecular breeding programs if QTLs for root angle can be identified. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such ofalse-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stripe or yellow rust (YR) is a significant problem in wheat crops worldwide. The deployment of adult-plant resistance (APR) genes in wheat cultivars is considered a sustainable management strategy, as these genes confer partial resistance that is usually non-race specific. Screening for APR typically involves assessment of adult plants in the field, where expression may be influenced by environmental factors. We report a high-throughput screening method for YR APR that can be used to assess fixed lines or segregating populations grown under controlled environmental conditions (CEC). Inoculation of 3-week-old wheat plants from lines with known APR responses to YR, when grown under constant light and temperature, provided disease responses typical of adult plants. Two F-2 populations ('H45' x 'ST93' and 'Wyalkatchem' x 'ST93') segregating for APR were assessed under both CEC and field conditions. These populations showed similar variation in disease response and lines assessed in both environments attained similar rankings. Phenotypic screening using CEC and continuous light provides an opportunity to accelerate the development of new wheat cultivars with durable resistance.