939 resultados para Helix-loop-helix
Resumo:
This work reports the structural and enzymatic characterization of a new sPLA2 from the white venom of Crotalus durissus ruruima, nominated PLA2A. The homogeneity of the PLA2A fraction and its molecular mass were initially evaluated by SDS-PAGE and confirmed by MALDI-TOF spectrometry, indicating a molecular mass of 14,299.34 Da. Structural investigation, through circular dichroism spectroscopy, revealed that PLA2A has a high content of alpha helix and beta-turn structures, 45.7% and 35.6% respectively. Its amino acid sequence, determined by Edman degradation and de novo amino acid sequencing, exhibited high identity to PLA2 Cdt F15 from Crotalus durissus terrificus. The enzymatic investigation, conducted using the synthetic substrate 4-nitre-3-(octanoyloxy)benzoic acid, determined its V(max) (7.56 nmoles/min) and K(M) (2.76 mM).Moreover, PLA2A showed an allosteric behavior and its enzymatic activity was dependent on Ca(2+). Intrinsic fluorescence measurements suggested that Ca(2+) induced a significant increase of PLA2A fluorescence, whereas its replacement for Mg(2+), Mn(2+), Sn(2+) and Cd(2+) apparently induced no structural modifications. The optimal pH and temperature for the enzymatic activity of PLA2A were 8.4 and 40 degrees C, respectively, and the minimal concentration of p-BPB and crotapotin that significantly inhibited such activity was 0.75 mM and 0.4 mu M, respectively. In addition, PLA2A showed a significant antibacterial effect that was not strictly dependent on the enzymatic activity of such sPLA2. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers.
Resumo:
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5' spliced leader (SL) cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Resumo:
The p23 protein is a chaperone widely involved in protein homeostasis, well known as an Hsp90 co-chaperone since it also controls the Hsp90 chaperone cycle. Human p23 includes a β-sheet domain, responsible for interacting with Hsp90; and a charged C-terminal region whose function is not clear, but seems to be natively unfolded. p23 can undergo caspase-dependent proteolytic cleavage to form p19 (p231-142), which is involved in apoptosis, while p23 has anti-apoptotic activity. To better elucidate the function of the human p23 C-terminal region, we studied comparatively the full-length human p23 and three C-terminal truncation mutants: p23₁₋₁₁₇; p23₁₋₁₃₁ and p23₁₋₁₄₂. Our data indicate that p23 and p19 have distinct characteristics, whereas the other two truncations behave similarly, with some differences to p23 and p19. We found that part of the C-terminal region can fold in an α-helix conformation and slightly contributes to p23 thermal-stability, suggesting that the C-terminal interacts with the β-sheet domain. As a whole, our results suggest that the C-terminal region of p23 is critical for its structure-function relationship. A mechanism where the human p23 C-terminal region behaves as an activation/inhibition module for different p23 activities is proposed.
Resumo:
This paper revisits the design of L and S band bridged loop-gap resonators (BLGRs) for electron paramagnetic resonance applications. A novel configuration is described and extensively characterized for resonance frequency and quality factor as a function of the geometrical parameters of the device. The obtained experimental results indicate higher values of the quality factor (Q) than previously reported in the literature, and the experimental analysis data should provide useful guidelines for BLGR design.
Resumo:
Context. The analysis and interpretation of the H(2) line emission from planetary nebulae have been done in the literature by assuming that the molecule survives only in regions where the hydrogen is neutral, as in photodissociation, neutral clumps, or shocked regions. However, there is strong observational and theoretical evidence that at least part of the H(2) emission is produced inside the ionized region of these objects. Aims. The aim of the present work is to calculate and analyze the infrared line emission of H(2) produced inside the ionized region of planetary nebulae using a one-dimensional photoionization code. Methods. The photoionization code Aangaba was improved in order to calculate the statistical population of the H(2) energy levels, as well as the intensity of the H(2) infrared emission lines in the physical conditions typical of planetary nebulae. A grid of models was obtained and the results then analyzed and compared with the observational data. Results. We show that the contribution of the ionized region to the H(2) line emission can be important, particularly in the case of nebulae with high-temperature central stars. This result explains why H(2) emission is more frequently observed in bipolar planetary nebulae (Gatley's rule), since this kind of object typically has hotter stars. Collisional excitation plays an important role in populating the rovibrational levels of the electronic ground state of H(2) molecules. Radiative mechanisms are also important, particularly for the upper vibrational levels. Formation pumping can have minor effects on the line intensities produced by de-excitation from very high rotational levels, especially in dense and dusty environments. We included the effect of the H(2) molecule on the thermal equilibrium of the gas, concluding that, in the ionized region, H(2) only contributes to the thermal equilibrium in the case of a very high temperature of the central star or a high dust-to-gas ratio, mainly through collisional de-excitation.
Resumo:
We have obtained nonperturbative one-loop expressions for the mean-energy-momentum tensor and current density of Dirac's field on a constant electriclike back-round. One of the goals of this calculation is to give a consistent description of backreaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contribution,, are related to the Heisenberg-Euler Lagrangian. Then, we Study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the backreaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.
Resumo:
An experimental study of the Polarization Dependent Loss (PDL) is performed in an Optical Recirculating Loop (RCL). The RCL enables to simulate the transmission through various optical links using just one optical fiber spool, one in line amplifier, some optical filters and devices in a low cost manner. The total amount of PDL in a Recirculating loop, due to its statistical nature, is different of the simple sum of each element of the recirculating loop because of the alignment variation of the PDL elements with time, depending on the environmental conditions such as fiber stress and temperature. In this paper theoretical studies are also performed using formalism of Jones and Mueller matrices in order to represent the different optical elements in the recirculating loop. The PDL must be correctly characterized in order to evaluate properly the impact on the performance of next generation DWDM systems. Theoretical and experimental results comparison shows that a depolarization of 7% occurs in the experimental setup, probably by the optical amplifier due to the depolarized nature of the amplified spontaneous emission.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m(3) mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m(3) sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.
Resumo:
The effect of flow type and rotor speed was investigated in a round-bottom reactor with 5 L useful volume containing 2.0 L of granular biomass. The reactor treated 2.0 L of synthetic wastewater with a concentration of 800 mgCOD/L in 8-h cycles at 30 degrees C. Five impellers, commonly used in biological processes, have been employed to this end, namely: a turbine and a paddle impeller with six-vertical-flat-blades, a turbine and a paddle impeller with six-45 degrees-inclined-flat-blades and a three-blade-helix impeller. Results showed that altering impeller type and rotor speed did not significantly affect system stability and performance. Average organic matter removal efficiency was about 84% for filtered samples, total volatile acids concentration was below 20 mgHAc/L and bicarbonate alkalinity a little less than 400 mgCaCO(3)/L for most of the investigated conditions. However, analysis of the first-order kinetic model constants showed that alteration in rotor speed resulted in an increase in the values of the kinetic constants (for instance, from 0.57 h(-1) at 50 rpm to 0.84 h(-1) at 75 rpm when the paddle impeller with six-45 degrees-inclined-flat-blades was used) and that axial flow in mechanically stirred reactors is preferable over radial-flow when the vertical-flat-blade impeller is compared to the inclined-flat-blade impeller (for instance at 75 rpm, from 0.52 h(-1) with the six-flat-blade-paddle impeller to 0.84 h(-1) with the six-45 degrees-inclined-flat-blade-paddle impeller), demonstrating that there is a rotor speed and an impeller type that maximize solid-liquid mass transfer in the reaction medium. Furthermore, power consumption studies in this reduced reactor volume showed that no high power transfer is required to improve mass transfer (less than 0.6 kW/10(3) m(3)). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Considering the increasing popularity of network-based control systems and the huge adoption of IP networks (such as the Internet), this paper studies the influence of network quality of service (QoS) parameters over quality of control parameters. An example of a control loop is implemented using two LonWorks networks (CEA-709.1) interconnected by an emulated IP network, in which important QoS parameters such as delay and delay jitter can be completely controlled. Mathematical definitions are provided according to the literature, and the results of the network-based control loop experiment are presented and discussed.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.