295 resultados para Heisenberg-antiferromagnet
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.
Resumo:
Knowledge is understanding. According to the philosopher Gaston Bachelard our immediate contact with the reality is only worth as confusing and provisional data. This phenomenological contact requires inventory and classification. For this reason our first reading on any phenomenon is limited to a basic levels of reality. Elements such as dynamics, functioning or detailed characteristics of what is observed can only be accessed at higher levels of reality, explains the physicist Werner Heisenberg. The ideas woven by these two great intellectuals oxygenates the notion that a well-made thinking does not require only observation and description of the nature, but assigns value and meaning to the knowledge. Based on these ideas and on the cognitive horizon brought by the complexity sciences, this research aims to nurture a reflection on our understanding of the world built from a rational perspective of experience, as an organic sequence of research. This arguments, over the study, describes how the experience is able to oxygenate a well-made thinking, as the concept created by Edgar Morin and expanded by Conceição Almeida. I argue that the experience as a path of investigative research allows one to ventures in the shadows of the unknown to access upper layers of reality. The experience is, therefore, an organic strategy for a well-made thinking - A nutritious mud that oxygenates, regulates, repairs and configures the quality of understanding. As a thread to discuss this ideas I've used my professional journey over a year and a half as a Natural Sciences' teacher on the Federal University of Rio Grande do Norte, where I could see how experiences helped on breaking a simplified understanding of the world. I chose to work with the research problems developed by 398 students over these three semesters. The problems were essential to the questioning of the phenomena that once seemed obvious or uninteresting, bringing out operational reasons and dynamics of the observed structures. Experience, in this sense, is the founder of dynamic thinking, as the need to deconstruct the phenomena's first impressions, assigning value and meaning to gestated knowledge.
Resumo:
Questo lavoro di tesi nasce all’interno del nucleo di ricerca in didattica della fisica dell’Università di Bologna, coordinato dalla professoressa Olivia Levrini e che coinvolge docenti di matematica e fisica dei Licei, assegnisti di ricerca e laureandi. Negli ultimi anni il lavoro del gruppo si è concentrato sullo studio di una possibile risposta all'evidente e pressante difficoltà di certi docenti nell'affrontare gli argomenti di meccanica quantistica che sono stati introdotti nelle indicazioni Nazionali per il Liceo Scientifico, dovuta a cause di vario genere, fra cui l'intrinseca complessità degli argomenti e l'inefficacia di molti libri di testo nel presentarli in modo adeguato. In questo contesto, la presente tesi si pone l’obiettivo di affrontare due problemi specifici di formalizzazione matematica in relazione a due temi previsti dalle Indicazioni Nazionali: il tema della radiazione di corpo nero, che ha portato Max Planck alla prima ipotesi di quantizzazione, e l’indeterminazione di Heisenberg, con il cambiamento di paradigma che ha costituito per l’interpretazione del mondo fisico. Attraverso un confronto diretto con le fonti, si cercherà quindi di proporre un percorso in cui il ruolo del protagonista sarà giocato dagli aspetti matematici delle teorie analizzate e dal modo in cui gli strumenti della matematica hanno contribuito alla loro formazione, mantenendo un costante legame con le componenti didattiche. Proprio in quest'ottica, ci si accorgerà della forte connessione fra i lavori di Planck e Heisenberg e due aspetti fondamentali della didattica della matematica: l'interdisciplinarietà con la fisica e il concetto di modellizzazione. Il lavoro finale sarà quindi quello di andare ad analizzare, attraverso un confronto con le Indicazioni Nazionali per il Liceo Scientifico e con alcune esigenze emerse dagli insegnanti, le parti e i modi in cui la tesi risponde a queste richieste.
Resumo:
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds -- Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions -- Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it -- Finally features related with emotions in voiced speech are extracted and presented
Resumo:
The recently reported Monte Carlo Random Path Sampling method (RPS) is here improved and its application is expanded to the study of the 2D and 3D Ising and discrete Heisenberg models. The methodology was implemented to allow use in both CPU-based high-performance computing infrastructures (C/MPI) and GPU-based (CUDA) parallel computation, with significant computational performance gains. Convergence is discussed, both in terms of free energy and magnetization dependence on field/temperature. From the calculated magnetization-energy joint density of states, fast calculations of field and temperature dependent thermodynamic properties are performed, including the effects of anisotropy on coercivity, and the magnetocaloric effect. The emergence of first-order magneto-volume transitions in the compressible Ising model is interpreted using the Landau theory of phase transitions. Using metallic Gadolinium as a real-world example, the possibility of using RPS as a tool for computational magnetic materials design is discussed. Experimental magnetic and structural properties of a Gadolinium single crystal are compared to RPS-based calculations using microscopic parameters obtained from Density Functional Theory.
Resumo:
We present a method to verify the metrological usefulness of noisy Dicke states of a particle ensemble with only a few collective measurements, without the need for a direct measurement of the sensitivity. Our method determines the usefulness of the state for the usual protocol for estimating the angle of rotation with Dicke states, which is based on the measurement of the second moment of a total spin component. It can also be used to detect entangled states that are useful for quantum metrology. We apply our method to recent experimental results.
Resumo:
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.
Resumo:
The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.