994 resultados para Hamiltonien effectif de spin
Resumo:
The superconducting and magnetic properties of splat cooled amorphous alloys of composition (La100-xGdx)80Au20 (0 ≤ x ≤ 100) have been studied. The La80Au20 alloys are ideal type II super-conductors (critical temperature Tc = 3.5° K ). The concentration range (x less than 1) where superconductivity and spin-glass freezing n1ight coexist has been studied in detail. The spin-glass alloys (0 less than x less than 70) exhibit susceptibility maxima and thermomagnetic history effects. In the absence of complications due to crystal field and enhanced matrix effects, a phenomenological model is proposed in which the magnetic clusters are treated as single spin entities interacting via random forces using the molecular field approach. The fundamental parameters (such as the strength of the forces and the size of clusters) can be deduced from magnetization measurements. The remanent magnetization is shown to arise from an interplay of the RKKY and dipolar forces. Magnetoresistivity results are found to be consistent with the aforementioned picture. The nature of magnetic interactions in an amorphous matrix is also discussed. The moment per Gd atom (7µB) is found to be constant and close to that of the crystalline value throughout the concentration range investigated. Finally, a detail study is made of the critical phenomena and magnetic properties of the amorphous ferromagnet: Gd80Au20. The results are compared with recent theories on amorphous magnetism.
Resumo:
In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.
The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.
The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.
An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.
Resumo:
En los últimos años, ha crecido el número de publicaciones existentes sobre el fenómeno de las spin-offs apareciendo así como un mecanismo revolucionario en el cumplimiento de la tercera misión de la universidad. El presente trabajo analiza la creación de spin-offs universitarias como método para la transferencia de conocimiento universidad-empresa, analizando en un principio la historia de la universidad, los modelos y mecanismos para la transferencia de conocimiento. El análisis continúa con una conceptualización del fenómeno una diferenciación de los tipos de spin-offs, además de destacar sus beneficios y factores condicionantes. Por último, se realiza una síntesis del marco legal vigente y un estudio aplicado sobre esta realidad en la UPV/EHU.
Resumo:
Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.
Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).
A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.
The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same
MnBr4-2 + Br- = MnBr4-2 + Br-.
The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.
In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.
Resumo:
Part I.
The interaction of a nuclear magnetic moment situated on an internal top with the magnetic fields produced by the internal as well as overall molecular rotation has been derived following the method of Van Vleck for the spin-rotation interaction in rigid molecules. It is shown that the Hamiltonian for this problem may be written
HSR = Ῑ · M · Ĵ + Ῑ · M” · Ĵ”
Where the first term is the ordinary spin-rotation interaction and the second term arises from the spin-internal-rotation coupling.
The F19 nuclear spin-lattice relaxation time (T1) of benzotrifluoride and several chemically substituted benzotrifluorides, have been measured both neat and in solution, at room temperature by pulsed nuclear magnetic resonance. From these experimental results it is concluded that in benzotrifluoride the internal rotation is crucial to the spin relaxation of the fluorines and that the dominant relaxation mechanism is the fluctuating spin-internal-rotation interaction.
Part II.
The radiofrequency spectrum corresponding to the reorientation of the F19 nuclear moment in flurobenzene has been studied by the molecular beam magnetic resonance method. A molecular beam apparatus with an electron bombardment detector was used in the experiments. The F19 resonance is a composite spectrum with contributions from many rotational states and is not resolved. A detailed analysis of the resonance line shape and width by the method of moments led to the following diagonal components of the fluorine spin-rotational tensor in the principal inertial axis system of the molecule:
F/Caa = -1.0 ± 0.5 kHz
F/Cbb = -2.7 ± 0.2 kHz
F/Ccc = -1.9 ± 0.1 kHz
From these interaction constants, the paramagnetic contribution to the F19 nuclear shielding in C6H5F was determined to be -284 ± ppm. It was further concluded that the F19 nucleus in this molecule is more shielded when the applied magnetic field is directed along the C-F bond axis. The anisotropy of the magnetic shielding tensor, σ” - σ⊥, is +160 ± 30 ppm.
Resumo:
Part I
Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.
Part II
The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.
Resumo:
Part I. Proton Magnetic Resonance of Polynucleotides and Transfer RNA.
Proton magnetic resonance was used to follow the temperature dependent intramolecular stacking of the bases in the polynucleotides of adenine and cytosine. Analysis of the results on the basis of a two state stacked-unstacked model yielded values of -4.5 kcal/mole and -9.5 kcal/mole for the enthalpies of stacking in polyadenylic and polycytidylic acid, respectively.
The interaction of purine with these molecules was also studied by pmr. Analysis of these results and the comparison of the thermal unstacking of polynucleotides and short chain nucleotides indicates that the bases contained in stacks within the long chain poly nucleotides are, on the average, closer together than the bases contained in stacks in the short chain nucleotides.
Temperature and purine studies were also carried out with an aqueous solution of formylmethionine transfer ribonucleic acid. Comparison of these results with the results of similar experiments with the homopolynucleotides of adenine, cytosine and uracil indicate that the purine is probably intercalating into loop regions of the molecule.
The solvent denaturation of phenylalanine transfer ribonucleic acid was followed by pmr. In a solvent mixture containing 83 volume per cent dimethylsulf oxide and 17 per cent deuterium oxide, the tRNA molecule is rendered quite flexible. It is possible to resolve resonances of protons on the common bases and on certain modified bases.
Part II. Electron Spin Relaxation Studies of Manganese (II) Complexes in Acetonitrile.
The electron paramagnetic resonance spectra of three Mn+2 complexes, [Mn(CH3CN)6]+2, [MnCl4]-2, and [MnBr4]-2, in acetonitrile were studied in detail. The objective of this study was to relate changes in the effective spin Hamiltonian parameters and the resonance line widths to the structure of these molecular complexes as well as to dynamical processes in solution.
Of the three systems studied, the results obtained from the [Mn(CH3CN)6]+2 system were the most straight-forward to interpret. Resonance broadening attributable to manganese spin-spin dipolar interactions was observed as the manganese concentration was increased.
In the [MnCl4]-2 system, solvent fluctuations and dynamical ion-pairing appear to be significant in determining electron spin relaxation.
In the [MnBr4]-2 system, solvent fluctuations, ion-pairing, and Br- ligand exchange provide the principal means of electron spin relaxation. It was also found that the spin relaxation in this system is dependent upon the field strength and is directly related to the manganese concentration. A relaxation theory based on a two state collisional model was developed to account for the observed behavior.
Resumo:
The objective of this investigation has been a theoretical and experimental understanding of ferromagnetic resonance phenomena in ferromagnetic thin films, and a consequent understanding of several important physical properties of these films. Significant results have been obtained by ferromagnetic resonance, hysteresis, torque magnetometer, He ion backscattering, and X-ray fluorescence measurements for nickel-iron alloy films.
Taking into account all relevant magnetic fields, including the applied, demagnetizing, effective anisotropy and exchange fields, the spin wave resonance condition applicable to the thin film geometry is presented. On the basis of the simple exchange interaction model it is concluded that the normal resonance modes of an ideal film are expected to be unpinned. The possibility of nonideality near the surface of a real film was considered by means of surface anisotropy field, inhomogeneity in demagnetizing field and inhomogeneity of magnetization models. Numerical results obtained for reasonable parameters in all cases show that they negligibly perturb the resonance fields and the higher order mode shapes from those of the unpinned modes of ideal films for thicknesses greater than 1000 Å. On the other hand for films thinner than 1000 Å the resonance field deviations can be significant even though the modes are very nearly unpinned. A previously unnoticed but important feature of all three models is that the interpretation of the first resonance mode as the uniform mode of an ideal film allows an accurate measurement of the average effective demagnetizing field over the film volume. Furthermore, it is demonstrated that it is possible to choose parameters which give indistinguishable predictions for all three models, making it difficult to uniquely ascertain the source of spin pinning in real films from resonance measurements alone.
Spin wave resonance measurements of 81% Ni-19% Fe coevaporated films 30 to 9000 Å thick, at frequencies from 1 to 8 GHz, at room temperature, and with the static magnetic field parallel and perpendicular to the film plane have been performed. A self-consistent analysis of the results for films thicker than 1000 Å, in which multiple excitations can be observed, shows for the first time that a unique value of exchange constant A can only be obtained by the use of unpinned mode assignments. This evidence and the resonance behavior of films thinner than 1000 Å strongly imply that the magnetization at the surfaces of permalloy films is very weakly pinned. However, resonance measurements alone cannot determine whether this pinning is due to a surface anisotropy, an inhomogeneous demagnetizing field or an inhomogeneous magnetization. The above analysis yields a value of 4πM=10,100 Oe and A = (1.03 ± .05) x 10-6 erg/cm for this alloy. The ability to obtain a unique value of A suggests that spin wave resonance can be used to accurately characterize the exchange interaction in a ferromagnet.
In an effort to resolve the ambiguity of the source of pinning of the magnetization, a correlation of the ratio of magnetic moment and X-ray film thickness with the value of effective demagnetizing field 4πNM as determined from resonance, for films 45 to 300 Å has been performed. The remarkable agreement of both quantities and a comparison with the predictions of five distinct models, strongly imply that the thickness dependence of both quantities is related to a thickness dependent average saturation magnetization, which is far below 10,100 Oe for very thin films. However, a series of complementary experiments shows that this large decrease of average saturation magnetization cannot be simply explained by either oxidation or interdiffusion processes. It can only be satisfactorily explained by an intrinsic decrease of the average saturation magnetization for very thin films, an effect which cannot be justified by any simple physical considerations.
Recognizing that this decrease of average saturation magnetization could be due to an oxidation process, a correlation of resonance measurements, He ion backscattering, X-ray fluorescence and torque magnetometer measurements, for films 40 to 3500 Å thick has been performed. On basis of these measurements it is unambiguously established that the oxide layer on the surface of purposefully oxidized 81% Ni-19% Fe evaporated films is predominantly Fe-oxide, and that in the oxidation process Fe atoms are removed from the bulk of the film to depths of thousands of angstroms. Extrapolation of results for pure Fe films indicates that the oxide is most likely α-Fe2O3. These conclusions are in agreement with results from old metallurgical studies of high temperature oxidation of bulk Fe and Ni-Fe alloys. However, X-ray fluorescence results for films oxidized at room temperature, show that although the preferential oxidation of Fe also takes place in these films, the extent of this process is by far too small to explain the large variation of their average saturation magnetization with film thickness.
Resumo:
Gradu amaierako lan honetan, LAPW metodoa aztertu da solidoen propietate elektronikoak era teorikoan ikertzeko eta efektu erlatibistek hauengan duten eragina zenbatesteko tresna teoriko bezala. Konkretuki spin-orbita elkarrekintzan zentratu gara, eta hau konputazionalki inplementatzeko bigarren bariazionalaren metodoa aztertu da. Bestalde, Spin-DFT teoriaren barruan spin-orbita kodifikatzen duen trukatze-korrelazio eremu bektorialaren azterketa labur bat egin da, ekarpen erlatibista beste ikuspuntu batetik aztertu eta informazio osagarria lortzeko asmoz.
Resumo:
65 p.
Resumo:
[EN] The objective of this paper is to analyze the incubation strategies developed in the universities of Andalusia, a relatively low-income region of Spain, to promote the creation of university spin-offs. These strategies are also compared to the incubation models noted in the literature. The performance of the university spin-offs created and its relation to the incubation strategies developed by the university are also analysed. The analysis is based on data from a survey of nine public universities that carry out strategies for the promotion of university spin-offs. The result of the analysis shows that university spin-off incubation strategies in Andalusia present specific characteristics not covered by certain models that are well-known in the literature on innovation. Then, a new stage in the process of the university spin-off incubation is proposed. We consider it to be a pre-strategic stage to the academic spin-off incubation strategies. The analysis also finds certain environmental factors associated to those spin-offs promoted by Andalusian universities that achieve the highest level of performance. This result suggests that previous to making any decision involving investment into developing incubation strategies, universities should gauge whether they have sufficient resources and the possibilities of connecting with a Technology Park.
Resumo:
129 p.
Resumo:
In this paper, GdFeCo/DyFeCo exchange-coupled double-layer films used for center aperture type magnetically induced super resolution were investigated through experiments and theoretical calculation. The samples were prepared by magnetron sputtering method. The polar Kerr effect was measured to prove the spin reorientation of the readout layer. Theoretical study of magnetization profiles was performed on the basis of the mean-field theory and the continuum model. The theoretical results showed that the magnetization orientation of the readout layer changed gradually from in-plane to out-of-plane with the rise of the temperature. Theoretical analysis explained the experimental results successfully. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.