961 resultados para HIGH-MOBILITY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer MoxW1-xS2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi's golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in MoxW1-xS2. While impurity scattering limits the mobility for low carrier densities (<2-4x10(12) cm(-2)), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in MoxW1-xS2. The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in MoxW1-xS2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS2 andWS(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer MoxW1-xS2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi's golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in MoxW1-xS2. While impurity scattering limits the mobility for low carrier densities (<2-4x10(12) cm(-2)), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in MoxW1-xS2. The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in MoxW1-xS2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS2 andWS(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposite thin film transistors (TFTs) based on nonpercolating networks of single-walled carbon nanotubes (CNTs) and polythiophene semiconductor [poly [5, 5′ -bis(3-dodecyl-2-thienyl)- 2, 2′ -bithiophene] (PQT-12)] thin film hosts are demonstrated by ink-jet printing. A systematic study on the effect of CNT loading on the transistor performance and channel morphology is conducted. With an appropriate loading of CNTs into the active channel, ink-jet printed composite transistors show an effective hole mobility of 0.23 cm 2 V-1 s-1, which is an enhancement of more than a factor of 7 over ink-jet printed pristine PQT-12 TFTs. In addition, these devices display reasonable on/off current ratio of 105-10 6, low off currents of the order of 10 pA, and a sharp subthreshold slope (<0.8 V dec-1). The work presented here furthers our understanding of the interaction between polythiophene polymers and nonpercolating CNTs, where the CNT density in the bilayer structure substantially influences the morphology and transistor performance of polythiophene. Therefore, optimized loading of ink-jet printed CNTs is crucial to achieve device performance enhancement. High performance ink-jet printed nanocomposite TFTs can present a promising alternative to organic TFTs in printed electronic applications, including displays, sensors, radio-frequency identification (RFID) tags, and disposable electronics. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The velocity of selectively-introduced edge dislocations in 99.999 percent pure copper crystals has been measured as a function of stress at temperatures from 66°K to 373°K by means of a torsion technique. The range of resolved shear stress was 0 to 15 megadynes/ cm^2 for seven temperatures (66°K, 74°K, 83°K, 123°K, 173°K, 296°K, 296°K, 373°K.

Dislocation mobility is characterized by two distinct features; (a) relatively high velocity at low stress (maximum velocities of about 9000 em/sec were realized at low temperatures), and (b) increasing velocity with decreasing temperature at constant stress.

The relation between dislocation velocity and resolved shear stress is:

v = v_o(τ_r/τ_o)^n

where v is the dislocation velocity at resolved shear stress τ_r, v_o is a constant velocity chosen equal to 2000 cm/ sec, τ_o is the resolved shear stress required to maintain velocity v_o, and n is the mobility coefficient. The experimental results indicate that τ_o decreases from 16.3 x 10^6 to 3.3 x 10^6 dynes/cm^2 and n increases from about 0.9 to 1.1 as the temperature is lowered from 296°K to 66°K.

The experimental dislocation behavior is consistent with an interpretation on the basis of phonon drag. However, the complete temperature dependence of dislocation mobility could not be closely approximated by the predictions of one or a combination of mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noise measurements from 140°K to 350°K ambient temperature and between 10kHz and 22MHz performed on a double injection silicon diode as a function of operating point indicate that the high frequency noise depends linearly on the ambient temperature T and on the differential conductance g measured at the same frequency. The noise is represented quantitatively by〈i^2〉 = α•4kTgΔf. A new interpretation demands Nyquist noise with α ≡ 1 in these devices at high frequencies. This is in accord with an equivalent circuit derived for the double injection process. The effects of diode geometry on the static I-V characteristic as well as on the ac properties are illustrated. Investigation of the temperature dependence of double injection yields measurements of the temperature variation of the common high-level lifetime τ(τ ∝ T^2), the hole conductivity mobility µ_p (µ_p ∝ T^(-2.18)) and the electron conductivity mobility µ_n(µ_n ∝ T^(-1.75)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimized AlGaN/AlN/GaN high electron mobility transistors (HEMTs) structures were grown on 2-in semi-insulating (SI) 6H-SiC substrate by metal-organic chemical vapor deposition (MOCVD). The 2-in. HEMT wafer exhibited a low average sheet resistance of 305.3 Omega/sq with a uniformity of 3.85%. The fabricated large periphery device with a dimension of 0.35 pm x 2 nun demonstrated high performance, with a maximum DC current density of 1360 mA/mm, a transconductance of 460 mS/mm, a breakdown voltage larger than 80 V, a current gain cut-off frequency of 24 GHz and a maximum oscillation frequency of 34 GHz. Under the condition of continuous-wave (CW) at 9 GHz, the device achieved 18.1 W output power with a power density of 9.05 W/mm and power-added-efficiency (PAE) of 36.4%. While the corresponding results of pulse condition at 8 GHz are 22.4 W output power with 11.2 W/mm power density and 45.3% PAE. These are the state-of-the-art power performance ever reported for this physical dimension of GaN HEMTs based on SiC substrate at 8 GHz. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality Ge epilayer on Si(1 0 0) substrate with an inserted low-temperature Ge seed layer and a thin Si0.77Ge0.23 layer was grown by ultrahigh vacuum chemical vapor deposition. The epitaxial Ge layer with surface root-mean-square roughness of 0.7 nm and threading dislocation density of 5 x 10(5) cm(-2) was obtained. The influence of low temperature Ge seed layer on the quality of Ge epilayer was investigated. We demonstrated that the relatively higher temperature (350 degrees C) for the growth of Ge seed layer significantly improved the crystal quality and the Hall hole mobility of the Ge epilayer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally stimulated luminescence spectroscopy has been applied to study the deep centres in unintentionally doped high resistivity GaN epilayers grown by the metal organic chemical vapour deposition method on c-sapphire substrates. Two trap states with activation energies of 0.12 and 0.62 eV are evaluated from two luminescence peaks at 141.9 and 294.7 K in the luminescence curve. Our spectroscopy measurement, in combination with more accurate first-principles studies, provided insights into the microscopic origin of these levels. Our investigations suggest that the lower level at 0.12 eV might originate from C-N, which behaves as a hole trap state; the deeper level at 0.62 eV can be correlated with V-Ga that corresponds to the yellow luminescence band observed in low-temperature photoluminescence spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epitaxial growth of AlxGa1-xN film with high Al content by metalorganic chemical vapor deposition (MOCVD) has been accomplished. The resulting Al content was determined to be 54% by high resolution X-ray diffraction (HRXRD) and Vegard's law. The full width at half maximum (FWHM) of the AlGaN (0002) HRXRD rocking curve was about 597 arcsec. Atomic force microscopy (AFM) image showed a relatively rough surface with grain-like islands, mainly coming from the low surface mobility of adsorbed Alspecies. From transmittance measurement, the cut-off wavelength was around 280 nm and Fabry-Perot fringes were clearly visible in the transmission region. Cathodoluminescence (CL) measurement indicated that there existed a uniformity in the growth direction and a non-uniformity in the lateral direction. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The A1 compositional distribution of A1GaN is investigated by cathodoluminescence (CL). Monochromatic CL images and CL spectra reveal a lateral A1 compositional inhomogeneity, which corresponds to surface hexagonal patterns. Cross-sectional CL images show a relatively uniform Al compositional distribution in the growth direction, indicating columnar growth mode of A1GaN films. In addition, a thin A1GaN layer with lower Al composition is grown on top of the buffer A1N layer near the bottom of the A1GaN epilayer because of the larger lateral mobility of Ga adatoms on the growth surface and their accumulation at the grain boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron irradiation induced defects in InP material which has been formed by high temperature annealing undoped InP in different atmosphere have been studied in this paper. In addition to Fe acceptor, there is no obvious defect peak in the sample before irradiation, whereas five defect peaks with activation energies of 0.23 eV, 0.26 eV, 0.31 eV, 0.37 eV and 0.46 eV have been detected after irradiation. InP annealed in P ambient has more thermally induced defects, and the defects induced by electron irradiation have characteristics of complex defect. After irradiation, carrier concentration and mobility of the samples have suffered obvious changes. Under the same condition, electron irradiation induced defects have fast recovery behavior in the FeP2 ambient annealed InP. The nature of defects, as well as their recovery mechanism and influence on material property have been discussed from the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unintentionally doped high-Al-content Al0.45Ga0.55N/GaN high electron mobility transistor (HEMT) structures with and without AlN interfacial layer were grown by metal-organic chemical vapor deposition (MOCVD) on two-inch sapphire substrates. The effects of AlN interfacial layer on the electrical properties were investigated. At 300 K, high two-dimensional electron gas (2DEG) density of 1.66 x 10(11) cm(-2) and high electron mobility of 1346 cm(2) V-1 s(-1) were obtained for the high Al content HEMT structure with a 1 nm AlN interfacial layer, consistent with the low average sheet resistance of 287 Omega/sq. The comparison of HEMT wafers with and without AlN interfacial layer shows that high Al content AlGaN/AlN/GaN heterostructures are potential in improving the electrical properties of HEMT structures and the device performances. (c) 2006 Elsevier B.V. All rights reserved.