929 resultados para Gram-positive Bacteria
Resumo:
Background & objectives: The multiple drug resistance (MDR) is a serious health problem and major challenge to the global drug discovery programmes. Most of the genetic determinants that confer resistance to antibiotics are located on R-plasmids in bacteria. The present investigation was undertaken to investigate the ability of organic extract of the fruits of Helicteres isora to cure R-plasmids from certain clinical isolates. mMethods: Active fractions demonstrating antibacterial and antiplasmid activities were isolated from the acetone extracts of shade dried fruits of H. isora by bioassay guided fractionation. Minimal inhibitory concentration (MIC) of antibiotics and organic extracts was determined by agar dilution method. Plasmid curing activity of organic fractions was determined by evaluating the ability of bacterial colonies (pre treated with organic fraction for 18 h) to grow in the presence of antibiotics. The physical loss of plasmid DNA in the cured derivatives was further confirmed by agarose gel electrophoresis. Results: The active fraction did not inhibit the growth of either the clinical isolates or the strains harbouring reference plasmids even at a concentration of 400 mu g/ml. However, the same fraction could cure plasmids from Enterococcus faecalis, Escherichia coli, Bacillus cereus and E. coli (RP4) at curing efficiencies of 14, 26, 22 and 2 per cent respectively. The active fraction mediated plasmid curing resulted in the subsequent loss of antibiotic resistance encoded in the plasmids as revealed by antibiotic resistance profile of cured strains. The physical loss of plasmid was also confirmed by agarose gel electrophoresis. Interpretation & conclusions: The active fraction of acetone extract of H. isora fruits cured R-plasmids from Gram-positive and Gram-negative clinical isolates as well as reference strains. Such plasmid loss reversed the multiple antibiotic resistance in cured derivatives making them sensitive to low concentrations of antibiotics. Acetone fractions of H. isora may be a source to develop antiplasmid agents of natural origin to contain the development and spread of plasmid borne multiple antibiotic resistance.
Resumo:
Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism
Resumo:
A highly homogeneous ZnO/Ag nanohybrid has been synthesized by a novel route, employing chitosan as mediator by purely electrostatic interaction. By employing various techniques such as powder XRD, UV-visible, IR spectroscopy and electron (SEM, TEM) microscopy, the formation of the nanohybrid has been established. The synergistic antibacterial effect of ZnO/Ag nanohybrid on Gram-positive and Gram-negative bacteria is found to be more effective, compared to the individual components (ZnO and Ag). Cytotoxicity experiments are carried out and the results are correlated to the solubility of the nanohybrid. A possible mechanism has been proposed for the antibacterial activity of ZnO/Ag nanohybrid, based on TEM studies on bacteria, carried out by employing the microtome technique and by EPR measurements on the hybrid.
Resumo:
The application of electromagnetic field in the context of bacteria associated infections on biomaterial surfaces has not been extensively explored. In this work, we applied a moderate intensity static magnetic field (100 mT) to understand the adhesion and growth behavior of both gram positive (S. epidermidis) and gram negative bacteria (E. coli) and also to investigate bactericidal/bacteriostatic property of the applied electromagnetic field. An in-house built magnetometer was used to apply static homogeneous magnetic field during a planned set of in vitro experiments. Both the sintered hydroxyapatite (HA) and the control samples seeded with bacteria were exposed to the magnetic field (100 mT) for different timescale during their log phase growth. Quantitative analysis of the SEM images confirms the effect of electromagnetic field on suppressing bacterial growth. Furthermore, cell integrity and inner membrane permeabilization assays were performed to understand the origin of such effect. The results of these assays were statistically analyzed to reveal the bactericidal effect of magnetic field, indicating cell membrane damage. Under the investigated culture conditions, the bactericidal effect was found to be less effective for S. Epidermidis than E. coli. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2012:100B:12061217, 2012.
Resumo:
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.
Resumo:
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Resumo:
Helicobacter pylori is a Gram-negative bacterium that colonizes human stomach and causes gastric inflammation. The species is naturally competent and displays remarkable diversity. The presence of a large number of restriction-modification (R-M) systems in this bacterium creates a barrier against natural transformation by foreign DNA. Yet, mechanisms that protect incoming double-stranded DNA (dsDNA) from restriction enzymes are not well understood. A DNA-binding protein, DNA Processing Protein A (DprA) has been shown to facilitate natural transformation of several Gram-positive and Gram-negative bacteria by protecting incoming single-stranded DNA (ssDNA) and promoting RecA loading on it. However, in this study, we report that H. pylori DprA (HpDprA) binds not only ssDNA but also dsDNA thereby conferring protection to both from various exo-nucleases and Type II restriction enzymes. Here, we observed a stimulatory role of HpDprA in DNA methylation through physical interaction with methyltransferases. Thus, HpDprA displayed dual functional interaction with H. pylori R-M systems by not only inhibiting the restriction enzymes but also stimulating methyltransferases. These results indicate that HpDprA could be one of the factors that modulate the R-M barrier during inter-strain natural transformation in H. pylori.
Resumo:
C-di-GMP Bis-(3'-5')-cyclic-dimeric-guanosine monophosphate], a second messenger is involved in intracellular communication in the bacterial species. As a result several multi-cellular behaviors in both Gram-positive and Gram-negative bacteria are directly linked to the intracellular level of c-di-GMP. The cellular concentration of c-di-GMP is maintained by two opposing activities, diguanylate cyclase (DGC) and phosphodiesterase (PDE-A). In Mycobacterium smegmatis, a single bifunctional protein MSDGC-1 is responsible for the cellular concentration of c-di-GMP. A better understanding of the regulation of c-di-GMP at the genetic level is necessary to control the function of above two activities. In this work, we have characterized the promoter element present in msdgc-1 along with the + 1 transcription start site and identified the sigma factors that regulate the transcription of msdgc-1. Interestingly, msdgc-1 utilizes SigA during the initial phase of growth, whereas near the stationary phase SigB containing RNA polymerase takes over the expression of msdgc-1. We report here that the promoter activity of msdgc-1 increases during starvation or depletion of carbon source like glucose or glycerol. When msdgc-1 is deleted, the numbers of viable cells are similar to 10 times higher in the stationary phase in comparison to that of the wild type. We propose here that msdgc-1 is involved in the regulation of cell population density. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The transcriptional regulation of gene expression is orchestrated by complex networks of interacting genes. Increasing evidence indicates that these `transcriptional regulatory networks' (TRNs) in bacteria have an inherently hierarchical architecture, although the design principles and the specific advantages offered by this type of organization have not yet been fully elucidated. In this study, we focussed on the hierarchical structure of the TRN of the gram-positive bacterium Bacillus subtilis and performed a comparative analysis with the TRN of the gram-negative bacterium Escherichia coli. Using a graph-theoretic approach, we organized the transcription factors (TFs) and sigma-factors in the TRNs of B. subtilis and E. coli into three hierarchical levels (Top, Middle and Bottom) and studied several structural and functional properties across them. In addition to many similarities, we found also specific differences, explaining the majority of them with variations in the distribution of s-factors across the hierarchical levels in the two organisms. We then investigated the control of target metabolic genes by transcriptional regulators to characterize the differential regulation of three distinct metabolic subsystems (catabolism, anabolism and central energy metabolism). These results suggest that the hierarchical architecture that we observed in B. subtilis represents an effective organization of its TRN to achieve flexibility in response to a wide range of diverse stimuli.
Resumo:
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Resumo:
The direct measurement of in situ respiring bacteria using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) shows that, especially for Gram-negative bacteria, large numbers of viable but non-culturable (VBNC) bacteria are present in finished water from a conventional water treatment plant, and the regrowth of bacteria along distribution networks can be seen rapidly by using this very sensitive technique. The level of bacterial inactivation with chlorine is much less important than has been previously supposed (based on experiments with non-injured laboratory strains of bacteria and classical culture techniques). Threshold values of VBNC bacteria leaving water treatment plants or regrowing along distribution systems have to be determined for better control of coliform regrowth and health- risks associated with the consumption of drinking water.
Resumo:
The bacteria from a variety of fresh-water fish, Cyprinus carpio. var. communis, showed the presence of micrococci, Gram positive and Gram negative rods. These have been characterized as far as was possible. Of thirty-eight strains of bacteria used, only six strains were considered as causing spoilage of fish flesh in experiments where flesh was incubated with individual cultures of the bacteria. These six strains had been found on the surface and/or intestine of the fish and support the suggestions that, after death, invasion of flesh by bacteria from the surface and intestine could be the cause of bacterial spoilage of fish.
Resumo:
Plate counts at R T and 8 C on the skin with muscle and the gut contents of absolutely fresh sardines (Sardinella longiceps) caught off Cochin showed a seasonal variation when sampling was done over a period of 12 months. The counts of the gut contents ran parallel with those of the skin with muscle, but at a higher level of magnitude. Qualitatively, the analysis of 360 strains of bacteria isolated from the skin with muscle and 100 strains from the guts during a year's study revealed a very high preponderance of Gram negative rods, mainly of Achromobacter, Vibrio, and Pseudomonas groups. The percentage of Gram positive organism was very low or nil at times in the ocean fresh sardines.
Resumo:
The “oxidase reaction” (using p-amino-dimethyl-aniline oxalate as the reagent) has been used to distinguish oxidase-negative from oxidase-positive bacteria from the sea, when grown on membrane filters. By this means, it has been shown (a) that under conditions of stable stratification of the sea as in the tropics, a relationship exists between the percentage incidence of oxidase negative bacteria in the flora and the depth of the water; (b) that the maximum value for this percentage incidence (100) is reached at or immediately below the upper limit of the oxygen minimum layer; (c) that this percentage value (expressed as Oxⁿvalues) may be used to demonstrate the movements of water masses during upwelling. Such upwelling as indicated by theoretical findings and by temperature determinations along two transects off the west coast of Ceylon during the north east monsoon, has been confirmed by the distribution of Oxⁿvalues at these transects.
Resumo:
Bacterial flora associated with tail rot/fin rot of Carassius auratus, Xiphophorus helleri and hemorrhagic ulcers of Clarias spp were studied. Sensitivity pattern of 33 isolates comprising Aeromonas spp, Pseudomonas spp and Gram-positive rods from diseased C. auratus, X. helleri and Clarias spp were screened against six broad-spectrum antibiotics viz. ciprofloxacin, chloramphenicol, co-trimoxazole, gentamycin, nitro-furantoin and oxytetracycline. Ciprofloxacin was the most effective in inhibiting bacteria at 0.05-0.10 µg/ml level. About 44% of Pseudomonas spp. was resistant to nitrofurantoin. Resistance to oxytetracycline was seen in 27% of Aeromonas spp Gram-positive rods were comparatively more resistant to antibiotics. The multiple antibiotic resistances were seen in 21% of the bacterial isolates of diseased fish.