904 resultados para Generalized linear mixed models
Resumo:
In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
The economic occupation of an area of 500 ha for Piracicaba was studied with the irrigated cultures of maize, tomato, sugarcane and beans, having used models of deterministic linear programming and linear programming including risk for the Target-Motad model, where two situations had been analyzed. In the deterministic model the area was the restrictive factor and the water was not restrictive for none of the tested situations. For the first situation the gotten maximum income was of R$ 1,883,372.87 and for the second situation it was of R$ 1,821,772.40. In the model including risk a producer that accepts risk can in the first situation get the maximum income of R$ 1,883,372. 87 with a minimum risk of R$ 350 year(-1), and in the second situation R$ 1,821,772.40 with a minimum risk of R$ 40 year(-1). Already a producer averse to the risk can get in the first situation a maximum income of R$ 1,775,974.81 with null risk and for the second situation R$ 1.707.706, 26 with null risk, both without water restriction. These results stand out the importance of the inclusion of the risk in supplying alternative occupations to the producer, allowing to a producer taking of decision considered the risk aversion and the pretension of income.
Resumo:
We introduce the log-beta Weibull regression model based on the beta Weibull distribution (Famoye et al., 2005; Lee et al., 2007). We derive expansions for the moment generating function which do not depend on complicated functions. The new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We employ a frequentist analysis, a jackknife estimator, and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes, and censoring percentages, several simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to evaluate the model assumptions. The extended regression model is very useful for the analysis of real data and could give more realistic fits than other special regression models.
Resumo:
This paper presents a personal view of the interaction between the analysis of choice under uncertainty and the analysis of production under uncertainty. Interest in the foundations of the theory of choice under uncertainty was stimulated by applications of expected utility theory such as the Sandmo model of production under uncertainty. This interest led to the development of generalized models including rank-dependent expected utility theory. In turn, the development of generalized expected utility models raised the question of whether such models could be used in the analysis of applied problems such as those involving production under uncertainty. Finally, the revival of the state-contingent approach led to the recognition of a fundamental duality between choice problems and production problems.
Resumo:
Background: Urban air pollutants are associated with cardiovascular events. Traffic controllers are at high risk for pollution exposure during outdoor work shifts. Objective: The purpose of this study was to evaluate the relationship between air pollution and systemic blood pressure in traffic controllers during their work shifts. Methods: This cross-sectional study enrolled 19 male traffic controllers from Santo Andre city (Sao Paulo, Brazil) who were 30-60 years old and exposed to ambient air during outdoor work shifts. Systolic and diastolic blood pressure readings were measured every 15 min by an Ambulatory Arterial Blood Pressure Monitoring device. Hourly measurements (lags of 0-5 h) and the moving averages (2-5 h) of particulate matter (PM(10)), ozone (O(3)) ambient concentrations and the acquired daily minimum temperature and humidity means from the Sao Paulo State Environmental Agency were correlated with both systolic and diastolic blood pressures. Statistical methods included descriptive analysis and linear mixed effect models adjusted for temperature, humidity, work periods and time of day. Results: Interquartile increases of PM(10) (33 mu g/m(3)) and O(3) (49 mu g/m(3)) levels were associated with increases in all arterial pressure parameters, ranging from 1.06 to 2.53 mmHg. PM(10) concentration was associated with early effects (lag 0), mainly on systolic blood pressure. However, O(3) was weakly associated most consistently with diastolic blood pressure and with late cumulative effects. Conclusions: Santo Andre traffic controllers presented higher blood pressure readings while working their outdoor shifts during periods of exposure to ambient pollutant fluctuations. However, PM(10) and O(3) induced cardiovascular effects demonstrated different time courses and end-point behaviors and probably acted through different mechanisms. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Imbalance and weakness of the serratus anterior and upper trapezius force couple have been described in patients with shoulder dysfunction. There is interest in identifying exercises that selectively activate these muscles and including it in rehabilitation protocols. This study aims to verify the UT/SA electromyographic (EMG) amplitude ratio, performed in different upper limb exercises and on two bases of support. Twelve healthy men were tested (average age = 22.8 +/- 3.1 years), and surface EMG was recorded from the upper trapezius and serratus anterior using single differential surface electrodes. Volunteers performed isometric contractions over a stable base of support and on a Swiss ball during the wall push-up (WP), bench press (BP), and push-up (PU) exercises. All SEMG data are reported as a percentage of root mean square or integral of linear envelope from the maximal value obtained in one of three maximal voluntary contractions for each muscle studied. A linear mixed-effect model was performed to compare UT/SA ratio values. The WP, BP, and PU exercises showed UT/SA ratio mean +/- SD values of 0.69 +/- 0.72, 0.14 +/- 0.12, and 0.39 +/- 0.37 for stable surfaces, respectively, whereas for unstable surfaces, the values were 0.73 +/- 0.67, 0.43 +/- 0.39, and 0.32 +/- 0.30. The results demonstrate that UT/SA ratio was influenced by the exercises and by the upper limb base of support. The practical application is to show that BP on a stable surface is the exercise preferred over WP and PU on either surfaces for serratus anterior muscle training in patients with imbalance between the UT/SA force couple or serratus anterior weakness.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.
Resumo:
The extent to which density-dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density-dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long-term dataset on the distribution of ticks among individual hosts. If density-dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host-parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re-analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density-dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population-scale increase in the aggregation coefficient is indirect evidence of a density-dependent process or processes sufficiently strong to produce a population-wide pattern, and thus also likely to influence population regulation. The direct observation of a density-dependent process is evidence of at least part of the responsible mechanism.
Resumo:
OBJECTIVE: Myocardial infarction is an acute and severe cardiovascular disease that generally leads to patient admissions to intensive care units and few cases are initially admitted to infirmaries. The objective of the study was to assess whether estimates of air pollution effects on myocardial infarction morbidity are modified by the source of health information. METHODS: The study was carried out in hospitals of the Brazilian Health System in the city of São Paulo, Southern Brazil. A time series study (1998-1999) was performed using two outcomes: infarction admissions to infirmaries and to intensive care units, both for people older than 64 years of age. Generalized linear models controlling for seasonality (long and short-term trends) and weather were used. The eight-day cumulative effects of air pollutants were assessed using third degree polynomial distributed lag models. RESULTS: Almost 70% of daily hospital admissions due to myocardial infarction were to infirmaries. Despite that, the effects of air pollutants on infarction were higher for intensive care units admissions. All pollutants were positively associated with the study outcomes but SO2 presented the strongest statistically significant association. An interquartile range increase on SO2 concentration was associated with increases of 13% (95% CI: 6-19) and 8% (95% CI: 2-13) of intensive care units and infirmary infarction admissions, respectively. CONCLUSIONS: It may be assumed there is a misclassification of myocardial infarction admissions to infirmaries leading to overestimation. Also, despite the absolute number of events, admissions to intensive care units data provides a more adequate estimate of the magnitude of air pollution effects on infarction admissions.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 25 de Março de 2013, Universidade dos Açores.
Resumo:
OBJECTIVE: To assess the impact of academic life on health status of university students. METHODS: Longitudinal study including 154 undergraduate students from the Universidade de Aveiro, Portugal, with at least two years of follow-up observations. Sociodemographic and behavioral characteristics were collected using questionnaires. Students' weight, height, blood pressure, serum glucose, serum lipids and serum homocysteine levels were measured. Regression analysis was performed using linear mixed-effect models, allowing for random effects at the participant level. RESULTS: A higher rate of dyslipidemia (44.0% vs. 28.6%), overweight (16.3% vs. 12.5%) and smoking (19.3% vs. 0.0%) was found among students exposed to the academic life when compared to freshmen. Physical inactivity was about 80%. Total cholesterol, high density lipoprotein-cholesterol (HDL-C), triglycerides, systolic blood pressure, and physical activity levels were significantly associated with gender (p<0.001). Academic exposure was associated with increased low density lipoprotein-cholesterol (LDL-C) levels (about 1.12 times), and marginally with total cholesterol levels (p=0.041). CONCLUSIONS: High education level does not seem to have a protective effect favoring a healthier lifestyle and being enrolled in health-related areas does not seem either to positively affect students' behaviors. Increased risk factors for non-transmissible diseases in university students raise concerns about their well-being. These results should support the implementation of health promotion and prevention programs at universities.
Resumo:
OBJECTIVE To analyze vaccination coverage and factors associated with a complete immunization scheme in children < 5 years old. METHODS This cross-sectional household census survey evaluated 1,209 children < 5 years old living in Bom Jesus, Angola, in 2010. Data were obtained from interviews, questionnaires, child immunization histories, and maternal health histories. The statistical analysis used generalized linear models, in which the dependent variable followed a binary distribution (vaccinated, unvaccinated) and the association function was logarithmic and had the children’s individual, familial, and socioeconomic factors as independent variables. RESULTS Vaccination coverage was 37.0%, higher in children < 1 year (55.0%) and heterogeneous across neighborhoods; 52.0% of children of both sexes had no immunization records. The prevalence rate of vaccination significantly varied according to child age, mother’s level of education, family size, ownership of household appliances, and destination of domestic waste. CONCLUSIONS Vulnerable groups with vaccination coverage below recommended levels continue to be present. Some factors indicate inequalities that represent barriers to full immunization, indicating the need to implement more equitable policies. The knowledge of these factors contributes to planning immunization promotion measures that focus on the most vulnerable groups.
Resumo:
OBJECTIVE Investigate the effect of exposure to smoking during pregnancy and early childhood on changes in the body mass index (BMI) from birth to adolescence.METHODS A population-based cohort of children (0-5 years old) from Cuiabá, Midwest Brazil, was assessed in 1999-2000 (n = 2,405). Between 2009 and 2011, the cohort was re-evaluated. Information about birth weight was obtained from medical records, and exposure to smoking during pregnancy and childhood was assessed at the first interview. Linear mixed effects models were used to estimate the association between exposure to maternal smoking during pregnancy and preschool age, and the body mass index of children at birth, childhood and adolescence.RESULTS Only 11.3% of the mothers reported smoking during pregnancy, but most of them (78.2%) also smoked during early childhood. Among mothers who smoked only during pregnancy (n = 59), 97.7% had smoked only in the first trimester. The changes in body mass index at birth and in childhood were similar for children exposed and those not exposed to maternal smoking. However, from childhood to adolescence the rate of change in the body mass index was higher among those exposed only during pregnancy than among those who were not exposed.CONCLUSIONS Exposure to smoking only during pregnancy, especially in the first trimester, seems to affect changes in the body mass index until adolescence, supporting guidelines that recommend women of childbearing age to stop smoking.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.