864 resultados para G-protein-coupled receptor
Resumo:
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor. Preclinical studies have shown that NPSR receptor activation can promote arousal, anxiolytic-like behavioral, decrease in food intake, besides hyperlocomotion, which is a robust but not well understood phenomenon. Previous findings suggest that dopamine transmission plays a crucial role in NPS hyperactivity. Considering the close relationship between dopamine and Parkinson Disease (PD), and also that NPSR receptors are expressed on dopaminergic nuclei in the brain, the current study attempted to investigate the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of 6-OHDA and systemic administration of haloperidol. Motor deficits induced by 6-OHDA and haloperidol were evaluated on Swiss mice in the rota-rod and catalepsy test. Time on the rotating rod and time spent immobile in the elevated bar were measured respectively in each test. L-Dopa, a classic antiparkinsonian drug, and NPS were administrated in mice submitted to one of the animal models of PD related above. 6-OHDA injection evoked severe motor impairments in rota-rod test, while the cataleptic behavior of 6-OHDA injected mice was largely variable. The administration of L-Dopa (25 mg/kg) and NPS (0,1 and 1 nmol) reversed motor impairments induced by 6-OHDA in the rota-rod. Haloperidolinduced motor deficits on rota-rod and catalepsy tests which were reversed by L-Dopa (100 e 400 mg/kg), but not by NPS (0,1 and 1 nmol) administration. The association of L-Dopa 10 mg/kg and NPS 1 nmol was also unable to counteract haloperidol-induced motor deficits. To summarize, 6-OHDA-, but not haloperidol-, induced motor deficits were reversed by the central administration of NPS. These data suggest that NPS possibly facilitates dopamine release in basal ganglia, what would explain the overcome of motor performance promoted by NPS administration in animals pretreated with 6-OHDA, but not haloperidol. Finally, the presented findings point, for the first time, to the potential of NPSR agonist as an innovative treatment for PD.
Resumo:
Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction
Resumo:
The mode of action of annexin A1 (ANXA1) is poorly understood. By using rapid subtraction hybridization we studied the effects of human recombinant ANXA1 and the N-terminal ANXA1 peptide on gene expression in a human larynx cell line. Three genes showed strong downregulation after treatment with ANXA1. In contrast, expression of CCR10, a seven transmembrane G-protein coupled receptor for chemokine CCL27 involved in mucosal immunity, was increased. Moreover the reduction in CCR10 expression induced by ANXA1 gene deletion was rescued by intravenous treatment with low doses of ANXA1. These findings provide new evidence that ANXA1 modulates gene expression. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The NMDA receptor (NMDAR) channel has been proposed to function as a coincidence-detection mechanism for afferent and reentrant signals, supporting conscious perception, learning, and memory formation. In this paper we discuss the genesis of distorted perceptual states induced by subanesthetic doses of ketamine, a well-known NMDA antagonist. NMDAR blockage has been suggested to perturb perceptual processing in sensory cortex, and also to decrease GABAergic inhibition in limbic areas (leading to an increase in dopamine excitability). We propose that perceptual distortions and hallucinations induced by ketamine blocking of NMDARs are generated by alternative signaling pathways, which include increase of excitability in frontal areas, and glutamate binding to AMPA in sensory cortex prompting Ca++ entry through voltage-dependent calcium channels (VDCCs). This mechanism supports the thesis that glutamate binding to AMPA and NMDARs at sensory cortex mediates most normal perception, while binding to AMPA and activating VDCCs mediates some types of altered perceptual states. We suggest that Ca++ metabolic activity in neurons at associative and sensory cortices is an important factor in the generation of both kinds of perceptual consciousness.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.
Resumo:
Smith-Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ∼139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS. © 2012 Macmillan Publishers Limited All rights reserved.
Resumo:
Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well established that a1A-ARs are less phosphorylated, desensitized, and internalized on exposure to the phenethylamines norepinephrine (NE), epinephrine, or phenylephrine (PE) than are the a1B and a1D subtypes. However, here we show in human embryonic kidney-293 cells that the low-efficacy agonist OXY induces G protein-coupled receptor kinase 2-dependent a1A-AR phosphorylation, followed by rapid desensitization and internalization (∼40% internalization after 5 minutes of stimulation), whereas phosphorylation of α1A-ARs exposed to NE depends to a large extent on protein kinase C activity and is not followed by desensitization, and the receptors undergo delayed internalization (∼35% after 60 minutes of stimulation). Native α1A-ARs from rat tail artery and vas deferens are also desensitized by OXY, but not by NE or PE, indicating that thisproperty of OXY is not limited to recombinant receptors expressed in cell systems. The results of the present study are clearly indicative of agonist-directed a1A-AR regulation. OXY shows functional selectivity relative to NE and PE at a1A-ARs, leading to significant receptor desensitization and internalization, which is important in view of the therapeutic vasoconstrictor effects of this drug and the varied biologic process regulated by α1A-ARs. Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics.
Resumo:
Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi-quantitative intracellular peptidome analyses of siRNA-transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1-10 mu M). The protein kinase A inhibitor KT5720 (1 mu M) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Pattern recognition receptors for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis, as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B-4 (LTB4). The influence of G protein-coupled receptor ligands such as LTB4 on fungal pattern recognition receptor expression is unknown. In this study, we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity G protein-coupled receptor leukotriene B4 receptor 1 (BLT1) direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from leukotriene (LT)- and BLT1-deficent mice than their wildtype counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 small interfering RNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1, as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1, and cytokine production were blunted in GM-CSF-/- macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi-protective host responses. The Journal of Immunology, 2012, 189: 906-915.
Resumo:
Background: The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria. Materials and Methods: Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30-45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients. Principal Findings: Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8). Conclusion: Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria.
Resumo:
The mechanisms underlying immune deficiency in diabetes are largely unknown. In the present study, we demonstrate that diabetic mice are highly susceptible to polymicrobial sepsis due to reduction in rolling, adhesion, and migration of leukocytes to the focus of infection. In addition, after sepsis induction, CXCR2 was strongly downregulated in neutrophils from diabetic mice compared with nondiabetic mice. Furthermore, CXCR2 downregulation was associated with increased G-protein coupled receptor kinase 2 (GRK2) expression in these cells. Different from nondiabetic mice, diabetic animals submitted to mild sepsis displayed a significant augment in alpha 1-acid glycoprotein (AGP) hepatic mRNA expression and serum protein levels. Administration of AGP in nondiabetic mice subjected to mild sepsis inhibited the neutrophil migration to the focus of infection, as well as induced t-selectin shedding and rise in CD11b of blood neutrophils. Insulin treatment of diabetic mice reduced mortality rate, prevented the failure of neutrophil migration, impaired GRK2-mediated CXCR2 downregulation, and decreased the generation of AGP. Finally, administration of AGP abolished the effect of insulin treatment in diabetic mice. Together, these data suggest that AGP may be involved in reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice. Diabetes 61:1584-1591, 2012
Resumo:
In der vorliegenden Dissertation wurden verschiedene Kandidatengene für den Wilmstumor (WT), eine Tumorerkrankung der Niere, identifiziert und charakterisiert. Da dieses frühkindliche Malignom aus einer inkorrekt ablaufenden Metanephrogenese resultiert, wurden die Genexpressionsmuster verschiedener humaner Wilmstumor- und Normalnierengewebe (adulte sowie fetale Niere) mit Hilfe der Technik des differential display verglichen und die als differenziell exprimiert identifizierten Gene kloniert und charakterisiert. Bei TM7SF1 handelt es sich um ein neues Gen, dessen Transkription im Zuge der Metanephrogenese angeschaltet wird. Das von ihm codierte putative Protein kann aufgrund von Strukturvorhersagen vermutlich zur Familie G Protein-gekoppelter Rezeptoren gezählt werden. Die ableitbare Funktion als Signalmolekül der Nierenentwicklung, sowie seine Lokalisation in einem WT-Lokus (1q42-q43) machen TM7SF1 zu einem aussichtsreichen Kandidatengen für den WT. Darüber hinaus konnten die Voraussetzungen für funktionelle Tests, die eine weitere Charakterisierung von TM7SF1 erlauben, geschaffen werden (Identifikation und Klonierung des murinen Homologen, stabil überexprimierende WT-Zelllinien, Antikörper gegen den Aminoterminus des putativen Proteins). Mit TCF2 wurde ein weiteres Gen identifiziert, dessen Produkt in Prozessen der Metanephrogenese eine Rolle spielt. Die signifikante Herunterregulation der TCF2-Expression in der großen Mehrzahl der untersuchten WTs, die innerhalb der vorliegenden Arbeit gezeigte Regulation durch das WT1-Genprodukt, sowie seine genomische Lokalisation in einem Intervall für die familiäre Form des WT (FWT1 in 17q12-q21) zeigen das Potenzial von TCF2, als Kandidatengen für den FWT zu gelten. Darüber hinaus wurde mit GLI3 ein in verschiedenen WTs stark exprimiertes Gen identifiziert. Sein Produkt ist eine Komponente des entwicklungsbiologisch relevanten und in verschiedene Tumorerkrankungen involvierten sonic hedgehog-Signaltransduktionsweges. Mit FE7A3 und CDT151 konnten zwei differenziell exprimierte cDNAs identifiziert werden, die Teile neuer Gene darstellen und die in WT-Loci kartiert werden konnten. Aufgrund von Homologievergleichen im Bereich der identifizierten offenen Leserahmen konnte eine mögliche Bedeutung der putativen Genprodukte für die WT-Pathogenese als Zelladhäsionsmolekül (FE7A3) bzw. als mit der Proliferation assoziiertem Transkriptionsfaktor (CDT151) herausgearbeitet werden. Neben den komparativen Genexpressionsuntersuchungen wurde in einem zweiten Ansatz die transkriptionelle Regulation des einzigen bisher klonierten Wilmstumorgens (WT1) analysiert. Mit Hilfe vergleichender Reportergenanalysen in WT1-exprimierenden und nicht-exprimierenden Zelllinien konnten neue für die transkriptionelle Regulation von WT1 relevante Bereiche identifiziert werden. Darüber hinaus wurde der für die Transkriptionsfaktoren SP1 und SP3 an anderen Promotoren beschriebene funktionelle Antagonismus für die WT1-Expression untersucht und in Gelretardationsanalysen mit dem WT1-Expressionsstatus oben genannter Zelllinien korreliert.
Resumo:
Das Usher Syndrom (USH) führt beim Menschen zur häufigsten Form erblicher Taub-Blindheit und wird aufgrund klinischer Merkmale in drei Typen unterteilt (USH1-3). Das Ziel dieser Arbeit war die Analyse der Expression und subzellulären Lokalisation des USH1G-Proteins SANS („Scaffold protein containing Ankyrin repeats and SAM domain“) in der Retina. Ein weiterer Fokus lag auf der Identifikation neuer Interaktionspartner zur funktionellen Charakterisierung von SANS. Im Rahmen der vorliegenden Arbeit konnte ein USH-Proteinnetzwerk identifiziert werden, das im Verbindungscilium und benachbarter Struktur, dem apikalen Innensegment von Photorezeptorzellen lokalisiert ist. Als Netzwerkkomponenten konnten die USH-Proteine SANS, USH2A Isoform b (USH2A), VLGR1b („Very Large G-protein coupled Receptor 1b“, USH2C) sowie Whirlin (USH2D) ermittelt werden. Innerhalb dieses Netzwerkes interagieren die Gerüstproteine SANS und Whirlin direkt miteinander. Die Transmembranproteine USH2A Isoform b und VLGR1b sind durch die direkte Interaktion mit Whirlin in ciliären-periciliären Membranen verankert und projizieren mit ihren langen Ektodomänen in den extrazellulären Spalt zwischen Verbindungscilium und apikalem Innensegment. Darüber hinaus konnte die Partizipation von SANS an Mikrotubuli-assoziiertem Vesikeltransport durch Identifikation neuer Interaktionspartner, wie dem MAGUK-Protein MAGI-2 („Membrane-Associated Guanylate Kinase Inverted-2“) sowie Dynaktin-1 (p150Glued) eruiert werden. Die Funktion des ciliären-periciliären USH-Proteinnetzwerkes könnte demnach in der Aufrechterhaltung benachbarter Membranstrukturen sowie der Beteiligung der Positionierung und Fusion von Transportvesikeln liegen.
Resumo:
Die Stimulation der APP-prozessierenden α-Sekretase ADAM10 eröffnet eine vielversprechende Möglichkeit zur medizinischen Behandlung der Alzheimer-Krankheit. In dieser Arbeit wurden drei unterschiedliche Strategien zur therapeutischen Aktivierung von ADAM10 verfolgt: Die Aktivierung des G-Protein-gekoppelten Rezeptors PAC1 durch PACAP, die Gentherapie mit ADAM10-cDNA und die ADAM10-Promotorstimulation durch Retinoid-Rezeptor-Aktivierung. PACAP-38 stimuliert die α-Sekretase-vermittelte APPsα-Sekretion in humanen Neuroblastomzellen. Durch Aktivierung des PAC-1-Rezeptors via intranasal verabreichtem PACAP-38, konnte eine erhöhte α-sekretorische APP-Prozessierung bzw. verminderte Ablagerung von amyloiden Plaques in Mäusen gezeigt werden. Weiterhin sollte durch Immunoliposomen-basierte Transfektion die humane ADAM10-cDNA in den Neuronen der Maus überexprimiert werden. Hiefür wurde die DNA in Liposomen eingeschlossen, welche an ihrer Oberfläche mit anti-Transferrin-Antikörpern zur Überwindung der Blut-Hirn-Schranke gekoppelt waren. Für die Herstellung des DNA-Transportsystems wurden die Einzelschritte wie DNA-Einschluss mit einem Reportergen-Vektor, Konjugation mit verschiedenen Antikörpern und Größe der Liposomen erprobt und optimiert. Es konnte allerdings weder in vitro noch in vivo eine Immunoliposomen-vermittelte Transfektion nachgewiesen werden. In dieser Arbeit wurde zudem die Retinoid-basierte Expressionssteigerung von ADAM10 untersucht. Dafür wurden die beiden potentiellen Retinoid-Rezeptor-Bindestellen auf dem ADAM10-Promotor durch Verwendung selektiver nukleärer Rezeptor-Agonisten charakterisiert. Hierbei konnte erstmals gezeigt werden, dass der ADAM10-Promotor durch ein Dimer der nukleären Rezeptoren RAR und RXR aktiviert wird, wodurch eine erhöhte α-sekretorischen APP-Prozessierung in Neuroblastoma-Zellen resultiert. Weiterhin konnte gezeigt werden, dass die RAR/RXR-Heterodimeraktivierung sowohl auf dem humanen wie auf dem murinen ADAM10-Promotor identisch ist, so dass am Mausmodell entwickelte Retinoid-basierte Therapien auf den Menschen übertragbar sind. Für das Modell einer solchen Therapie wurde Acitretin verwendet, welches für die medizinische Behandlung humaner Hautkrankheiten seit Jahrzehnten eingesetzt wird. In dieser Arbeit konnte erstmals gezeigt werden, dass Acitretin in humanen und murinen Neuroblastoma-Zellen die Menge an ADAM10 erhöht, wodurch die α-sekretorische APP-Prozessierung gesteigert wird. Zudem wurden Mäuse mit Acitretin oral, subcutan und intranasal behandelt, wobei jedoch weder eine Veränderung in der APP-Prozessierung noch der Blut-Hirn-Transport von Acitretin eindeutig belegt werden konnten. Dennoch erschließt die α-Sekretase-erhöhende Eigenschaft von Acitretin einen neuen Therapieansatz, zur Behandlung von Demenzformen vom Typ des Morbus Alzheimer.
Resumo:
Neurosteroide können langsame genomische und schnelle nicht-genomische Effekte zeigen. Die Synthese und der Metabolismus von Neurosteroiden werden entwicklungsbedingt reguliert. In den letzten Jahren sind immer mehr schnelle Steroideffekte bekannt geworden, die sowohl über klassische als auch über nicht-klassische Rezeptoren laufen. Zum heutigen Stand der Forschung sind die morphologischen Effekte von Neurosteroiden auf das neuronale Cytoskelett und die involvierten Signalkaskaden noch weitgehend unerforscht. In diesem Zusammenhang stellen sich auch die Fragen nach den verantwortlichen Rezeptoren und dem Transportmechanismus sowie der subzellulären Lokalisation der Steroide. Die im Rahmen meiner Promotion erhaltenen Ergebnisse zeigen, dass die Steroide DHEA und Testosteron eine Reorganisation des Aktincytoskeletts in neuronalen Zellen induzieren und dass diese Effekte diesen Steroiden und nicht ihren Folgemetaboliten zuzuordnen sind. DHEA bewirkt die Kontraktion der Zellen, eine erhöhte Ausbildung von Stressfasern und fokalen Adhäsionskomplexen sowie die Bildung von Filopodien. Der diesen Effekten zu Grunde liegende Signalweg konnte eindeutig identifiziert werden. DHEA induziert in neuronalen Zellen die Aktivierung des Rho-Signalwegs. Diese Aktivierung führt zu einem erhöhten Phosphorylierungsstatus der regulatorischen leichten Kette von Myosin II (MRLC) an Serin 19 und der damit verbundenen erhöhten Myosin-Aktin-Interaktion. Die Ausbildung von Filopodien wird vermutlich über eine Aktivierung der GTPase Cdc42 vermittelt. Testosteron induziert das Auswachsen langer Neuriten sowie eine Verminderung von Stressfasern in neuronalen Zellen. Diese Effekte sind abhängig von der Aktivität der PI3-Kinase. Die im Rahmen dieser Arbeit gewonnenen Erkenntnisse deuten darauf hin, dass Testosteron über die PI3-Kinase und FAK den Rac-Signalweg induziert, da es zu einer Inhibierung des Rho-Signalwegs kommt. Zahlreiche Erkenntnisse weisen darauf hin, dass DHEA und Testosteron die Aktivierung der beteiligten Signalwege über einen G-Protein gekoppelten Rezeptor induzieren. DHEA und Testosteron beeinflussen auch die Expression und die Lokalisation der regulatorischen leichten Ketten von Myosin II. Im Gegensatz zu DHEA (Lokalisation der MRLC in der kortikalen Region der Zelle), induziert Testosteron eine Umlokalisation der MRLC in den Zellkern. Daher ist es denkbar, dass die MRLCs, wie auch Aktin, als Transkriptionsfaktoren wirken können. Die Synthese eines funktionalen, fluoreszierenden DHEA-Derivats (DHEA-Bodipy) ermöglichte erstmals, den Transport und die subzelluläre Lokalisation von DHEA in neuronalen Zellen zu beobachten. DHEA-Bodipy wird in neuronalen Zellen in den Mitochondrien lokalisiert. Diese Lokalisation ergibt völlig neue Ansätze im Verständnis zellulärer Wirkungsorte von Steroiden und beteiligter Rezeptoren. Das in meiner Arbeit vorgestellte Verfahren zur Fluoreszenzmarkierung von Steroiden bietet vielfältige Möglichkeiten im Einsatz zellbiologischer Methoden. Nach diesem Verfahren hergestellte, fluoreszierende Steroide eignen sich aufgrund ihrer Stabilität sehr gut für die Untersuchung des Transports und der subzellulären Lokalisation von Steroiden an fixierten und lebenden Zellen sowie für Colokalisationsexperimente. Diese Methode grenzt somit auch die Anzahl möglicher molekularer Interaktionspartner ein. Für Testosteron konnte ebenfalls ein fluoreszierendes Testosteron-Derivat (Testosteron-Bodipy) synthetisiert werden. Die Aufklärung der Effekte von Steroiden auf das neuronale Cytoskelett und der beteiligten Signalkaskaden sowie die Identifizierung der zellulären Wirkungsorte ermöglichen therapeutische Ansätze zur Behandlung neurodegenerativer Erkrankungen, deren Ursachen in Abnormitäten des Cytoskeletts oder fehlregulierter Neurosteroidogenese zu begründen sind.