864 resultados para Fusão


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anualmente ocorrem cerca de 16 milhões AVCs em todo o mundo. Cerca de metade dos sobreviventes irá apresentar défice motor que necessitará de reabilitação na janela dos 3 aos 6 meses depois do AVC. Nos países desenvolvidos, é estimado que os custos com AVCs representem cerca de 0.27% do Produto Interno Bruto de cada País. Esta situação implica um enorme peso social e financeiro. Paradoxalmente a esta situação, é aceite na comunidade médica a necessidade de serviços de reabilitação motora mais intensivos e centrados no doente. Na revisão do estado da arte, demonstra-se o arquétipo que relaciona metodologias terapêuticas mais intensivas com uma mais proficiente reabilitação motora do doente. Revelam-se também as falhas nas soluções tecnológicas existentes que apresentam uma elevada complexidade e custo associado de aquisição e manutenção. Desta forma, a pergunta que suporta o trabalho de doutoramento seguido inquire a possibilidade de criar um novo dispositivo de simples utilização e de baixo custo, capaz de apoiar uma recuperação motora mais eficiente de um doente após AVC, aliando intensidade com determinação da correcção dos movimentos realizados relativamente aos prescritos. Propondo o uso do estímulo vibratório como uma ferramenta proprioceptiva de intervenção terapêutica a usar no novo dispositivo, demonstra-se a tolerabilidade a este tipo de estímulos através do teste duma primeira versão do sistema apenas com a componente de estimulação num primeiro grupo de 5 doentes. Esta fase validará o subsequente desenvolvimento do sistema SWORD. Projectando o sistema SWORD como uma ferramenta complementar que integra as componentes de avaliação motora e intervenção proprioceptiva por estimulação, é descrito o desenvolvimento da componente de quantificação de movimento que o integra. São apresentadas as diversas soluções estudadas e o algoritmo que representa a implementação final baseada na fusão sensorial das medidas provenientes de três sensores: acelerómetro, giroscópio e magnetómetro. O teste ao sistema SWORD, quando comparado com o método de reabilitação tradicional, mostrou um ganho considerável de intensidade e qualidade na execução motora para 4 dos 5 doentes testados num segundo grupo experimental. É mostrada a versatilidade do sistema SWORD através do desenvolvimento do módulo de Tele-Reabilitação que complementa a componente de quantificação de movimento com uma interface gráfica de feedback e uma ferramenta de análise remota da evolução motora do doente. Finalmente, a partir da componente de quantificação de movimento, foi ainda desenvolvida uma versão para avaliação motora automatizada, implementada a partir da escala WMFT, que visa retirar o factor subjectivo da avaliação humana presente nas escalas de avaliação motora usadas em Neurologia. Esta versão do sistema foi testada num terceiro grupo experimental de cinco doentes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O principal objectivo deste estudo foi o desenvolvimento de vitrocerâmicos à base de dissilicato de lítio no sistema Li2O-K2O-Al2O3-SiO2 contendo uma razão molar SiO2/Li2O muito afastada da do dissilicato de lítio (Li2Si2O5) usando composições simples e a técnica tradicional de fusão-vazamento de vidro de forma a obter materiais com propriedades mecânicas, térmicas, químicas e eléctricas superiores que permitam a utilização destes materiais em diversas aplicações funcionais. Investigou-se o fenómeno de separação de fases, a cristalização e as relações estrutura-propriedades de vidros nos sistemas Li2O-SiO2, Li2O-Al2O3-SiO2 e Li2O-K2O-Al2O3-SiO2. Os vidros nos sistemas Li2O-SiO2 e Li2O-Al2O3-SiO2 apresentaram fraca densificação e resultaram em materiais frágeis, contrastando com a boa sinterização dos vidros no sistema Li2O-K2O-Al2O3-SiO2. Pequenas adições de Al2O3 e K2O ao sistema Li2O-SiO2 permitiram controlar a separação de fases devido à formação de espécies de Al(IV) que confirmaram o papel de Al2O3 como formador de rede. Os compactos de pó de vidro das composições contendo Al2O3 e K2O tratados termicamente resultaram em vitrocerâmicos bem densificados, apresentando dissilicato de lítio como a principal fase cristalina, e valores de resistência mecânica à flexão, resistência química e condutividade eléctrica (173-224 MPa, 25-50 mg/cm2 e ~2´10-18 S/cm, respectivamente) que possibilitam a utilização destes materiais em diversas aplicações funcionais. A adição de P2O5, TiO2 e ZrO2 ao sistema Li2O-K2O-Al2O3-SiO2 como agentes nucleantes revelou que os vidros contendo apresentaram cristalização em volume, com a formação de metassilicato de lítio a temperaturas mais baixas e dissilicato de lítio para as temperaturas mais elevadas, enquanto a adição de zircónia reduz o grau de segregação, aumenta a polimerização da matriz vítrea e desloca o valor de Tg para temperaturas superiores, inibindo a cristalização.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permanece por esclarecer como a via de sinalização do cAMP modula a exocitose regulada. Os principais objetivos deste trabalho foram: i) avaliar o efeito do cAMP nos eventos exocitóticos, nas propriedades dos poros de fusão e na secreção hormonal; ii) perceber o impacto da sinalização por cAMP-HCN na exocitose e nas propriedades do poro de fusão; e iii) estudar as propriedades do poro de fusão na presença de um agente neurotóxico comum, como o alumínio. Lactotrofos, isolados a partir da hipófise anterior de ratos Wistar machos, foram usados como modelo celular. Os eventos unitários de fusão exocitótica e a prolactina (PRL) libertada foram avaliados, respetivamente, em ensaios eletrofisiológicos efectuados segundo a técnica de contacto hermético no modo sobre a célula aderida à pipeta porta-elétrodo e com recurso a métodos imunológicos de deteção. Os níveis intracelulares de cAMP foram aumentados por 3-isobutil-1-metilxantina (IMBX), forscolina e N6,2'-O-dibutiril adenosina- 3',5'-monofosfato cíclico (dbcAMP). A expressão dos canais HCN foi determinada por Western-blot, qRT-PCR e imunocitoquímica em combinação com microscopia confocal. Culturas primárias de lactotrofos foram também transfetadas com DNA plasmídico que codifica HCN2 juntamente com a proteína-verde-fluorescente e um agente farmacológico foi usado para avaliar o efeito de cAMP-HCN na exocitose. Observou-se que os lactotrofos responderam à forscolina e ao dbcAMP libertando PRL de um modo bifásico e dependente da concentração, uma vez que a secreção aumentou e diminuiu, respectivamente, na gama de baixas e altas concentrações. Os compostos que elevaram os níveis de cAMP aumentaram os eventos transientes e impediram a fusão completa. Além disso, o dbcAMP promoveu o aparecimento de eventos exocitóticos transientes de elevada periodicidade, cujos poros de fusão, de maior diâmetro, se mativeram abertos durante mais tempo. A expressão das quatro isoformas de HCN foi confirmada nos lactotrofos ao nível do mRNA e, tal como no coração, rim e hipófise, o mais abundante codifica a isoforma HCN2. Nos lactotrofos com sobre-expressão desta isoforma, o dbcAMP não só aumentou a frequência dos eventos transientes e a condutância dos poros, mas também a frequência dos eventos de fusão completa. Enquanto o bloqueador dos canais HCN, ZD7288, reduziu a frequência dos eventos transientes e de fusão completa desencadeados por dbcAMP e diminuiu o diâmetro dos poros de fusão. A simultânea diminuição da libertação de PRL, da frequência dos eventos transientes e do diâmetro dos poros de fusão representaram as principais alterações observados após pré-tratamento dos lactotrofos com concentração micromolar de alumínio. Em conclusão, os resultados demonstram que elevados níveis de cAMP reduzem a secreção de PRL devido à estabilização dos poros de fusão no estado de maior abertura. Além disso, a via de sinalização cAMP-HCN afecta a actividade exocitótica e modifica as propriedades dos poros de fusão, que parecem ser igualmente importantes na citotoxicidade induzida por alumínio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports studies on the new compounds obtained by the combination of polyoxoanions derived from the Keggin and Lindquist structures with several cations. The studies were first focused on the monolacunary Keggin polyoxoanions [PW11O39M(H2O)]n- (M = FeIII, MnIII and n = 4; M = CoII and n = 5) and its combination with the organic cation 1-butyl-3-methylimidazolium (Bmim+). The association of Bmim+ cation with the polyoxoanion [PW11O39Fe(H2O)]4- allowed to isolate for the first time both the monomeric and the dimeric [PW11O39Fe)2O]10- anions, with the same cation and using simple bench techniques by pH manipulation. Studies regarding the stability of these inorganic species in solution indicated that both species are present in solution in equilibrium. However, the inability to up until now isolate the dimeric unit through simple bench methods, lead to the hypothesis that the cation had a role to play in the selective precipitation of either the monomer or the dimer. Repetition of the same procedures with the polyoxoanions [SiW11O39Fe(H2O)]5- and [PW11O39M(H2O)]n- (M = FeIII, MnIII and n = 4; M = Co and n = 5), afforded only the corresponding monomeric compounds, (Bmim)5[SiW11O39FeIII(H2O)]· 4H2O (3), (Bmim)5[PW11O39CoII(H2O)]· 0.5 H2O, (4) and (Bmim)5[PW11O39MnIII(H2O)]· 0.5 H2O (5). Moreover, the combination of Bmim+ and the polyoxotungstate [PW11O39Co(H2O)]5- afforded two different crystal structures, depending on the synthetic conditions. Thus, a ratio Bmim+:POM of 5:1 and the presence of K+ cations (due to addition of KOH) led to a formula Na2K(Bmim)2[PW11.2O39Co0.8(H2O)]·7H2O (4a), whilst a ratio Bmim:POM of 7:1 led to the formation of a crystal with the chemical formula Na2(Bmim)8[PW11O39Co(H2O)]2·3H2O (4b). Electrochemical studies were performed with carbon paste electrodes modified with BmimCl to investigate the influence of the Bmim+ cation in the performance of the electrodes. The voltametric measurements obtained from solutions containing the anions [PW11O39]7- and [SiW11O39]8- are presented. Results pointed to an improvement of the acquired voltametric signal with a slight addition of BmimCl (up to 2.5% w/w), specially in the studies regarding pH variation. Additional synthesis were carried out with both the cations Omim+ and THTP+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directionally solidified zirconia-based eutectic (DSE) fibres were obtained using the laser floating zone (LFZ) method. Two systems were investigated: zirconia-barium zirconate and zirconia-mullite. The purpose was to take advantage of zirconia properties, particularly as an ionic conductor and a mechanical rein-forcement phase. The influence of processing conditions in the structural and microstructural characteristics and their consequences on the electrical and mechanical behaviour were the focus of this thesis. The novel zirconia-barium zirconate eutectic materials were developed in order to combine oxygen ionic conduction through zirconia with protonic conduction from barium zirconate, promoting mixed ionic conduction behaviour. The mi-crostructure of the fibres comprises two alternated regions: bands having coarser zirconia-rich microstructure; and inter-band regions changing from a homogeneous coupled eutectic, at the lowest pulling rate, to columnar colony microstructure, for the faster grown fibres. The bands inter-distance increases with the growth rate and, at 300 mm/h, zirconia dendrites develop enclosed in a fine-interpenetrated network of 50 vol.% ZrO2-50 vol.% BaZrO3. Both phases display contiguity without interphase boundaries, according to impedance spec-troscopy data. Yttria-rich compositions were considered in order to promote the yttrium incorporation in both phases, as revealed by Raman spectroscopy and corroborated by the elemental chemical analysis in energy dispersive spectros-copy. This is a mandatory condition to attain simultaneous contribution to the mixed ionic conduction. Such results are supported by impedance spectrosco-py measurements, which clearly disclose an increase of total ionic conduction for lower temperatures in wet/reduction atmospheres (activation energies of 35 kJ/mol in N2+H2 and 48 kJ/mol in air, in the range of 320-500 ºC) compared to the dry/oxidizing conditions (attaining values close to 90 kJ/mol, above 500 ºC). At high temperatures, the proton incorporation into the barium zirconate is un-favourable, so oxygen ion conduction through zirconia prevails, in dry and oxi-dizing environments, reaching a maximum of 1.3x10-2 S/cm in dry air, at ~1000 ºC. The ionic conduction of zirconia was alternatively combined with another high temperature oxygen ion conductor, as mullite, in order to obtain a broad elec-trolytic domain. The growth rate has a huge influence in the amount of phases and microstructure of the directionally solidified zirconia-mullite fibres. Their microstructure changes from planar coupled eutectic to dendritic eutectic mor-phology, when the growth rate rises from 1 to 500 mm/h, along with an incre-ment of tetragonal zirconia content. Furthermore, high growth rates lead to the development of Al-Si-Y glassy phase, and thus less mullite amount, which is found to considerably reduce the total ionic conduction of as-grown fibres. The reduction of the glassy phase content after annealing (10h; 1400 ºC) promotes an increase of the total ionic conduction (≥0.01 S/cm at 1370 °C), raising the mullite and tetragonal zirconia contents and leading to microstructural differ-ences, namely the distribution and size of the zirconia constituent. This has important consequences in conductivity by improving the percolation pathways. A notable increase in hardness is observed from 11.3 GPa for the 10 mm/h pulled fibre to 21.2 GPa for the fibre grown at 500 mm/h. The ultra-fine eutectic morphology of the 500 mm/h fibres results in a maximum value of 534 MPa for room temperature bending strength, which decreases to about one-fourth of this value at high temperature testing (1400 ºC) due to the soft nature of the glassy-matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) – Fluorapatite (Ca5(PO4)3F) – Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1–12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass®. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass–ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this PhD thesis was to provide convincing demonstration for a breakthrough concept of pyroelectrolysis at laboratory scale. One attempted to identify fundamental objections and/or the most critical constraints, to propose workable concepts for the overall process and for feasible electrodes, and to establish the main requirements on a clearer basis. The main effort was dedicated to studying suitable anode materials to be developed for large scale industrial units with molten silicate electrolyte. This concept relies on consumable anodes based on iron oxides, and a liquid Fe cathode, separated from the refractory materials by a freeze lining (solid) layer. In addition, one assessed an alternative concept of pyroelectrolysis with electron blocking membranes, and developed a prototype at small laboratory scale. The main composition of the molten electrolyte was based on a magnesium aluminosilicate composition, with minimum liquidus temperature, and with different additions of iron oxide. One studied the dynamics of devitrification of these melts, crystallization of iron oxides or other phases, and Fe2+/Fe3+ redox changes under laser zone melting, at different pulling rates. These studies were intended to provide guidelines for dissolution of raw materials (iron oxides) in the molten electrolyte, to assess compatibility with magnetite based consumable anodes, and to account for thermal gradients or insufficient thermal management in large scale cells. Several laboratory scale prototype cells were used to demonstrate the concept of pyroelectrolysis with electron blocking, and to identify the most critical issues and challenges. Operation with and without electron blocking provided useful information on transport properties of the molten electrolyte (i.e., ionic and electronic conductivities), their expected dependence on anodic and cathodic overpotentials, limitations in faradaic efficiency, and onset of side electrochemical reactions. The concept of consumable anodes was based on magnetite and derived spinel compositions, for their expected redox stability at high temperatures, even under oxidising conditions. Spinel compositions were designed for prospective gains in refractoriness and redox stability in wider ranges of conditions (T, pO2 and anodic overpotentials), without excessive penalty for electrical conductivity, thermomechanical stability or other requirements. Composition changes were also mainly based on components of the molten aluminosilicate melt, to avoid undue contamination and to minimize the dissolution rate of consumable anodes. Additional changes in composition were intended for prospective pyroelectrolysis of Fe alloys, with additions of different elements (Cr, Mn, Ni, Ti).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A região de Banabuiú situa-se no Domínio Ceará Central, na porção setentrional da Província Borborema, um dos cinturões orogénicos formados durante o evento Brasiliano/Pan-Africano no final do Neoproterozóico. As duas unidades litológicas principais presentes na área são: o complexo gnáissicomigmatítico (metapelitos e metagrauvaques) e granitóides brasilianos. Para além das formações paraderivadas, no substrato da região também foi identificado um conjunto de rochas ortoderivadas, até então não individualizado na cartografia existente. Tanto a sequência paraderivada, como os materiais ortoderivados, foram intensamente afectados por metamorfismo regional da fácies granulítica durante a Orogenia Brasiliana, que atingiu as condições de fusão parcial, gerando migmatitos com um amplo espectro de morfologias. Estes migmatitos apresentam estruturas dominantemente estromáticas, embora localmente se tenham identificado também corpos irregulares de diatexitos de tipo“schlieren”, “schollen” e “maciço (s.s)”, indicando que o processo de migmatização culminou com a produção de maiores quantidades de fundido. Em termos tectónicos, o basamento da região regista os efeitos de três fases de deformação, embora as estruturas concordantes à D3 sejam dominantes e obliterem, em muitos casos, as anisotropias anteriores. A maior parte dos fundidos anatécticos parece ter sido produzida durante tectónica transcorrente D3. No entanto, as condições metamórficas para o início da fusão parcial parece ter sido atingidas antes, durante a D2, já que também existem leucossomas, embora em proporções reduzidas, associados com as estruturas desta fase. A grande quantidade de volumes de leucossomas / veios leucocráticos encontrados na região, está relacionada com a actuação da zona de cisalhamento de Orós e parece corresponder a fundidos anatécticos gerados em níveis mais profundos que foram injectados nas sequências orto- e para-derivadas, devido a notória escassez de leucossomas “in situ” nestas rochas. A presença de fluidos aquosos injectados no complexo migmatítico de Banabuiú terá proporcionado a re-hidratação e retrogradação das rochas hospedeiras, evidenciada, essencialmente, pela presença de moscovite tardia, amplamente distribuída nos metassedimentos e ortognaisses, sobretudo nas zonas próximas aos leucossomas e veios leucocráticos. Dados isotópicos apontam que as rochas da região de Banabuiú apresentam valores fortemente negativos de εNdt e positivos de εSrt sugerindo um significativo envolvimento de materiais supracrustais do grupo Acopiara na formação do complexo migmatítico e na petrogénese do maciço granítico de Banabuiú e o marcado fraccionamento isotópico Sm-Nd observado nalguns dos leucossomas analisados indica que os líquidos anatécticos que lhes deram origem resultaram de processos de fusão em desequilíbrio, em condições anidras, e foram rapidamente extraídos da área-fonte, comprovando o carácter alóctone dos veios leucocráticos intercalados nos ortognaisses e paragnaisses de Banabuiú.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The planar design of solid oxide fuel cell (SOFC) is the most promising one due to its easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. Glass and glass-ceramic (GC), in particular alkaline-earth alumino silicate based glasses and GCs, are becoming the most promising materials for gas-tight sealing applications in SOFCs. Besides the development of new glass-based materials, new additional concepts are required to overcome the challenges being faced by the currently existing sealant technology. The present work deals with the development of glasses- and GCs-based materials to be used as a sealants for SOFCs and other electrochemical functional applications. In this pursuit, various glasses and GCs in the field of diopside crystalline materials have been synthesized and characterized by a wide array of techniques. All the glasses were prepared by melt-quenching technique while GCs were produced by sintering of glass powder compacts at the temperature ranges from 800−900 ºC for 1−1000 h. Furthermore, the influence of various ionic substitutions, especially SrO for CaO, and Ln2O3 (Ln=La, Nd, Gd, and Yb), for MgO + SiO2 in Al-containing diopside on the structure, sintering and crystallization behaviour of glasses and properties of resultant GCs has been investigated, in relevance with final application as sealants in SOFC. From the results obtained in the study of diopside-based glasses, a bilayered concept of GC sealant is proposed to overcome the challenges being faced by (SOFCs). The systems designated as Gd−0.3 (in mol%: 20.62MgO−18.05CaO−7.74SrO−46.40SiO2−1.29Al2O3 − 2.04 B2O3−3.87Gd2O3) and Sr−0.3 (in mol%: 24.54 MgO−14.73 CaO−7.36 SrO−0.55 BaO−47.73 SiO2−1.23 Al2O3−1.23 La2O3−1.79 B2O3−0.84 NiO) have been utilized to realize the bi-layer concept. Both GCs exhibit similar thermal properties, while differing in their amorphous fractions, revealed excellent thermal stability along a period of 1,000 h. They also bonded well to the metallic interconnect (Crofer22APU) and 8 mol% yttrium stabilized zirconium (8YSZ) ceramic electrolyte without forming undesirable interfacial layers at the joints of SOFC components and GC. Two separated layers composed of glasses (Gd−0.3 and Sr−0.3) were prepared and deposited onto interconnect materials using a tape casting approach. The bi-layered GC showed good wetting and bonding ability to Crofer22APU plate, suitable thermal expansion coefficient (9.7–11.1 × 10–6 K−1), mechanical reliability, high electrical resistivity, and strong adhesion to the SOFC componets. All these features confirm the good suitability of the investigated bi-layered sealant system for SOFC applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mest., Ciências Biomédicas, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertebral column and its units, the vertebrae, are fundamental features, characteristic of all vertebrates. Developmental segregation of the vertebral bodies as articulated units is an intrinsic requirement to guarantee the proper function of the spine. Whenever these units become fused either during development or postsegmentation, movement is affected in a more or less severe manner, depending on the number of vertebrae affected. Nevertheless, fusion may occur as part of regular development and as a physiological requirement, like in the tetrapod sacrum or in fish posterior vertebrae forming the urostyle. In order to meet the main objective of this PhD project, which aimed to better understand the molecular and cellular events underlying vertebral fusion under physiological and pathological conditions, a detailed characterization of the vertebral fusion occurring in zebrafish caudal fin region was conducted. This showed that fusion in the caudal fin region comprised 5 vertebral bodies, from which, only fusion between [PU1++U1] and ural2 [U2+] was still traceable during development. This involved bone deposition around the notochord sheath while fusion within the remaining vertebral bodies occur at the level of the notochord sheath, as during the early establishment of the vertebral bodies. A comparison approach between the caudal fin vertebrae and the remaining vertebral column showed conserved features such as the presence of mineralization related proteins as Osteocalcin were identified throughout the vertebral column, independently on the mineralization patterns. This unexpected presence of Osteocalcin in notochord sheath, here identified as Oc1, suggested that this gene, opposing to Oc2, generally associated with bone formation and mature osteoblast activity, is potentially associated with early mineralization events including chordacentrum formation. Nevertheless, major differences between caudal fin region and anterior vertebral bodies considering arch histology and mineralization patterns, led us to use RA as an inductive factor for vertebral fusion, allowing a direct comparison of equivalent structures under normal and fusion events. This fusion phenotype was associated with notochord sheath ectopic mineralization instead of ectopic perichordal bone formation related with increased osteoblast activity, as suggested in previous reports. Additionally, alterations in ECM content, cell adhesion and blood coagulation were discussed as potentially related with the fusion phenotype. Finally, Matrix gla protein, upregulated upon RA treatment and shown to be associated with chordacentrum mineralization sites in regular development, was further described considering its potential function in vertebral formation and pathological fusion. Therefore with this work we propose zebrafish caudal fin vertebral fusion as a potential model to study both congenital and postsegmentation fusion and we present candidate factors and genes that may be further explored in order to clarify whether we can prevent vertebral fusion.