963 resultados para Functional Magnetic Resonance Imaging (fMRI)
Resumo:
Working memory (WM) is not a unitary construct. There are distinct processes involved in encoding information, maintaining it on-line, and using it to guide responses. The anatomical configurations of these processes are more accurately analyzed as functionally connected networks than collections of individual regions. In the current study we analyzed event-related functional magnetic resonance imaging (fMRI) data from a Sternberg Item Recognition Paradigm WM task using a multivariate analysis method that allowed the linking of functional networks to temporally-separated WM epochs. The length of the delay epochs was varied to optimize isolation of the hemodynamic response (HDR) for each task epoch. All extracted functional networks displayed statistically significant sensitivity to delay length. Novel information extracted from these networks that was not apparent in the univariate analysis of these data included involvement of the hippocampus in encoding/probe, and decreases in BOLD signal in the superior temporal gyrus (STG), along with default-mode regions, during encoding/delay. The bilateral hippocampal activity during encoding/delay fits with theoretical models of WM in which memoranda held across the short term are activated long-term memory representations. The BOLD signal decreases in the STG were unexpected, and may reflect repetition suppression effects invoked by internal repetition of letter stimuli. Thus, analysis methods focusing on how network dynamics relate to experimental conditions allowed extraction of novel information not apparent in univariate analyses, and are particularly recommended for WM experiments for which task epochs cannot be randomized.
Resumo:
Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI), however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.
Resumo:
Using simultaneous electroencephalography as a measure of ongoing activity and functional magnetic resonance imaging (fMRI) as a measure of the stimulus-driven neural response, we examined whether the amplitude and phase of occipital alpha oscillations at the onset of a brief visual stimulus affects the amplitude of the visually evoked fMRI response. When accounting for intrinsic coupling of alpha amplitude and occipital fMRI signal by modeling and subtracting pseudo-trials, no significant effect of prestimulus alpha amplitude on the evoked fMRI response could be demonstrated. Regarding the effect of alpha phase, we found that stimuli arriving at the peak of the alpha cycle yielded a lower blood oxygenation level-dependent (BOLD) fMRI response in early visual cortex (V1/V2) than stimuli presented at the trough of the cycle. Our results therefore show that phase of occipital alpha oscillations impacts the overall strength of a visually evoked response, as indexed by the BOLD signal. This observation complements existing evidence that alpha oscillations reflect periodic variations in cortical excitability and suggests that the phase of oscillations in postsynaptic potentials can serve as a mechanism of gain control for incoming neural activity. Finally, our findings provide a putative neural basis for observations of alpha phase dependence of visual perceptual performance.
Resumo:
Background Major depressive disorders (MDD) are a debilitating and pervasive group of mental illnesses afflicting many millions of people resulting in the loss of 110 million working days and more than 2,500 suicides per annum. Adolescent MDD patients attending NHS clinics show high rates of recurrence into adult life. A meta-analysis of recent research shows that psychological treatments are not as efficacious as previously thought. Modest treatment outcomes of approximately 65% of cases responding suggest that aetiological and clinical heterogeneity may hamper the better use of existing therapies and discovery of more effective treatments. Information with respect to optimal treatment choice for individuals is lacking, with no validated biomarkers to aid therapeutic decision-making. Methods/Design Magnetic resonance-Improving Mood with Psychoanalytic and Cognitive Therapies, the MR-IMPACT study, plans to identify brain regions implicated in the pathophysiology of depressions and examine whether there are specific behavioural or neural markers predicting remission and/or subsequent relapse in a subsample of depressed adolescents recruited to the IMPACT randomised controlled trial (Registration # ISRCTN83033550). Discussion MR-IMPACT is an investigative biomarker component of the IMPACT pragmatic effectiveness trial. The aim of this investigation is to identify neural markers and regional indicators of the pathophysiology of and treatment response for MDD in adolescents. We anticipate that these data may enable more targeted treatment delivery by identifying those patients who may be optimal candidates for therapeutic response.
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share cognitive abnormalities in temporal foresight. A key question is whether shared cognitive phenotypes are based on common or different underlying pathophysiologies and whether comorbid patients have additive neurofunctional deficits, resemble one of the disorders or have a different pathophysiology. We compared age- and IQ-matched boys with non-comorbid ADHD (18), non-comorbid ASD (15), comorbid ADHD and ASD (13) and healthy controls (18) using functional magnetic resonance imaging (fMRI) during a temporal discounting task. Only the ASD and the comorbid groups discounted delayed rewards more steeply. The fMRI data showed both shared and disorder-specific abnormalities in the three groups relative to controls in their brain-behaviour associations. The comorbid group showed both unique and more severe brain-discounting associations than controls and the non-comorbid patient groups in temporal discounting areas of ventromedial and lateral prefrontal cortex, ventral striatum and anterior cingulate, suggesting that comorbidity is neither an endophenocopy of the two pure disorders nor an additive pathology.
Resumo:
Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.
Resumo:
BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.
Resumo:
The investigation of bilingualism and cognition has been enriched by recent developments in functional magnetic resonance imaging (fMRI). Extending how bilingual experience shapes cognition, this review examines recent fMRI studies adopting executive control tasks with minimal or no linguistic demands. Across a range of studies with divergent ages and language pairs spoken by bilinguals, brain regions supporting executive control significantly overlap with brain regions recruited for language control (Abutalebi & Green, this issue). Furthermore, limited but emerging studies on resting-state networks are addressed, which suggest more coherent spatially distributed functional connectivity in bilinguals. Given the dynamic nature of bilingual experience, it is essential to consider both task-related functional networks (externally-driven engagement), and resting-state networks, such as default mode network (internal control). Both types of networks are important elements of bilingual language control, which relies on domain-general executive control.
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
Objective: Abnormalities in the morphology and function of two gray matter structures central to emotional processing, the perigenual anterior cingulate cortex (pACC) and amygdala, have consistently been reported in bipolar disorder (BD). Evidence implicates abnormalities in their connectivity in BD. This study investigates the potential disruptions in pACC-amygdala functional connectivity and associated abnormalities in white matter that provides structural connections between the two brain regions in BD. Methods: Thirty-three individuals with BD and 31 healthy comparison subjects (HC) participated in a scanning session during which functional magnetic resonance imaging (fMRI) during processing of face stimuli and diffusion tensor imaging (DTI) were performed. The strength of pACC-amygdala functional connections was compared between BD and HC groups, and associations between these functional connectivity measures from the fMRI scans and regional fractional anisotropy (FA) from the DTI scans were assessed. Results: Functional connectivity was decreased between the pACC and amygdala in the BD group compared with HC group, during the processing of fearful and happy faces (p < .005). Moreover, a significant positive association between pACC-amygdala functional coupling and FA in ventrofrontal white matter, including the region of the uncinate fasciculus, was identified (p < .005). Conclusion: This study provides evidence for abnormalities in pACC-amygdala functional connectivity during emotional processing in BD. The significant association between pACC-amygdala functional connectivity and the structural integrity of white matter that contains pACC-amygdala connections suggest that disruptions in white matter connectivity may contribute to disturbances in the coordinated responses of the pACC and amygdala during emotional processing in BD.
Resumo:
OBJECTIVE: To assess the cardiovascular features of Ullrich-Turner's syndrome using echocardiography and magnetic resonance imaging, and to correlate them with the phenotype and karyotype of the patients. The diagnostic concordance between the 2 methods was also assessed. METHODS: Fifteen patients with the syndrome were assessed by echocardiography and magnetic resonance imaging (cardiac chambers, valves, and aorta). Their ages ranged from 10 to 28 (mean of 16.7) years. The karyotype was analyzed in 11 or 25 metaphases of peripheral blood lymphocytes, or both. RESULTS: The most common phenotypic changes were short stature and spontaneous absence of puberal development (100%); 1 patient had a cardiac murmur. The karyotypes detected were as follows: 45,X (n=7), mosaics (n=5), and deletions (n=3). No echocardiographic changes were observed. In regard to magnetic resonance imaging, coarctation and dilation of the aorta were found in 1 patient, and isolated dilation of the aorta was found in 4 patients. CONCLUSION: The frequencies of coarctation and dilation of the aorta detected on magnetic resonance imaging were similar to those reported in the literature (5.5% to 20%, and 6.3% to 29%, respectively). This confirmed the adjuvant role of magnetic resonance imaging to Doppler echocardiography for diagnosing cardiovascular alterations in patients with Ullrich-Turner's syndrome.
Resumo:
Two cases of type 1 dermoid sinus in Rhodesian ridgebacks are described, with emphasis on the use of magnetic resonance imaging (MRI) in the diagnosis and delineation of the lesions. Magnetic resonance imaging was useful in identifying fluid-filled structures, fibrous capsules, and sinus tracts, but was not able to identify the termination of the tracts.
Resumo:
In the present experimental study we assessed induced osteoarthritis data in rabbits, compared three diagnostic methods, i.e., radiography (XR), computed tomography (CT) and magnetic resonance imaging (MRI), and correlated the imaging findings with those obtained by macroscopic evaluation. Ten young female rabbits of the Norfolk breed were used. Seven rabbits had the right knee immobilized in extension for a period of 12 weeks (immobilized group), and three others did not have a limb immobilized and were maintained under the same conditions (control group). Alterations observed by XR, CT and MRI after the period of immobilization were osteophytes, osteochondral lesions, increase and decrease of joint space, all of them present both in the immobilized and non-immobilized contralateral limbs. However, a significantly higher score was obtained for the immobilized limbs (XT: P = 0.016, CT: P = 0.031, MRI: P = 0.0156). All imaging methods were able to detect osteoarthritis changes after the 12 weeks of immobilization. Macroscopic evaluation identified increased thickening of joint capsule, proliferative and connective tissue in the femoropatellar joint, and irregularities of articular cartilage, especially in immobilized knees. The differences among XR, CT and MRI were not statistically significant for the immobilized knees. However, MRI using a 0.5 Tesla scanner was statistically different from CT and XR for the non-immobilized contralateral knees. We conclude that the three methods detected osteoarthritis lesions in rabbit knees, but MRI was less sensitive than XR and CT in detecting lesions compatible with initial osteoarthritis. Since none of the techniques revealed all the lesions, it is important to use all methods to establish an accurate diagnosis.
Resumo:
BACKGROUND: We investigated, with magnetic resonance imaging, the distance of the dura mater to the spinal cord in patients without spinal or medullar disease at the 2nd, 5th, and 10th thoracic segments.METHODS: Fifty patients in the supine position underwent magnetic resonance imaging. Medial sagittal slices of the 2nd, 5th, and 10th thoracic segments were measured for the relative distances using the 1.5-T superconducting system (Gyroscan Intera, Philips Medical Systems, Best, the Netherlands). In 10 patients, the angles relative to the tangent at the insertion point on the skin were measured.RESULTS: The posterior dural-spinal cord distance is significantly greater at the midthoracic region (5th thoracic = 5.8 +/- 0.8 mm) than at the upper (2nd thoracic = 3.9 +/- 0.8 mm) and lower thoracic levels (10th thoracic = 4.1 +/- 1.0 mm) (P < 0.015). There were no differences between interspaces T2 and 110. There was no correlation between age and the measured distance between the dura mater and the spinal cord. The entry angle of the needle at T2 was 9.0 degrees +/- 2.5 degrees; at T5, 45.0 degrees +/- 7.4 degrees; and at T10, 9.50 degrees +/- 4.2 degrees.CONCLUSIONS: This study demonstrated that there is greater depth of the posterior subarachnoid space at the T2, T5, and T10 levels. The greater distance was found at T5. (Anesth Analg 2010;110:1494-5)