959 resultados para Fractional derivative of variable order


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 35CXX, 26A33, 35S10

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 47A56, 47A57,47A63

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS Subj. Classification: MSC2010: 11F72, 11M36, 58J37

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercises involving the calculation of the derivative of piecewise defined functions are common in calculus, with the aim of consolidating beginners’ knowledge of applying the definition of the derivative. In such exercises, the piecewise function is commonly made up of two smooth pieces joined together at one point. A strategy which avoids using the definition of the derivative is to find the derivative function of each smooth piece and check whether these functions agree at the chosen point. Showing that this strategy works together with investigating discontinuities of the derivative is usually beyond a calculus course. However, we shall show that elementary arguments can be used to clarify the calculation and behaviour of the derivative for piecewise functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: Primary 34A60, Secondary 49K24.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: Primary 35J70; Secondary 35J15, 35D05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35L80

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34C10, 34C15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 39A10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter, we theoretically and numerically analyze the performance of coherent optical transmission systems that deploy inline or transceiver based nonlinearity compensation techniques. For systems where signal-signal nonlinear interactions are fully compensated, we find that beyond the performance peak the signal-to-noise ratio degradation has a slope of 3 dBSNR/dBPower suggesting a quartic rather than quadratic dependence on signal power. This is directly related to the fact that signals in a given span will interact not only with linear amplified spontaneous emission noise, but also with the nonlinear four-wave mixing products generated from signal-noise interaction in previous (hitherto) uncompensated spans. The performance of optical systems employing different nonlinearity compensation schemes were numerically simulated and compared against analytical predictions, showing a good agreement within a 0.4 dB margin of error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.