932 resultados para Flow rate variation coefficient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular clock does not tick at a uniform rate in all taxa but maybe influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of nearly neutral mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Including positive end-expiratory pressure (PEEP) in the manual resuscitation bag (MRB) may render manual hyperinflation (MHI) ineffective as a secretion maneuver technique in mechanically ventilated patients. In this study we aimed to determine the effect of increased PEEP or decreased compliance on peak expiratory flow rate (PEF) during MHI. A blinded, randomized study was performed on a lung simulator by 10 physiotherapists experienced in MHI and intensive care practice. PEEP levels of 0-15 cm H2O, compliance levels of 0.05 and 0.02 L/cm H2O, and MRB type were randomized. The Mapleson-C MRB generated significantly higher PEF (P < 0.01, d = 2.72) when compared with the Laerdal MRB for all levels of PEEP. In normal compliance (0.05 L/cm H2O) there was a significant decrease in PEF (P < 0.01, d = 1.45) for a PEEP more than 10 cm H2O in the Mapleson-C circuit. The Laerdal MRB at PEEP levels of more than 10 cm H2O did not generate a PEF that is theoretically capable of producing two-phase gas-liquid flow and, consequently, mobilizing pulmonary secretions. If MHI is indicated as a result of mucous plugging, the Mapleson-C MRB may be the most effective method of secretion mobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fouling is the deposition of milk solids on heat transfer sur aces, particularly heat exchangers. It is a major industrial problem, which causes a decrease in heat transfer efficiency and shortens run times. The resultant effect is a decrease in process efficiency and economy. For studying and monitoring deposit formation, suitable fouling detectors or methods of measuring the deposit are required. This can be achieved through direct means, whereby the deposit is analyzed after a certain time, or indirectly through instrumentation for monitoring parameters such as temperature, pressure, flow rate, overall heat transfer coefficient, heat flux, and other physical properties. This article reviews the various reported fouling detection methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental investigations and computer modelling studies have been made on the refrigerant-water counterflow condenser section of a small air to water heat pump. The main object of the investigation was a comparative study between the computer modelling predictions and the experimental observations for a range of operating conditions but other characteristics of a counterflow heat exchanger are also discussed. The counterflow condenser consisted of 15 metres of a thermally coupled pair of copper pipes, one containing the R12 working fluid and the other water flowing in the opposite direction. This condenser was mounted horizontally and folded into 0.5 metre straight sections. Thermocouples were inserted in both pipes at one metre intervals and transducers for pressure and flow measurement were also included. Data acquisition, storage and analysis was carried out by a micro-computer suitably interfaced with the transducers and thermocouples. Many sets of readings were taken under a variety of conditions, with air temperature ranging from 18 to 26 degrees Celsius, water inlet from 13.5 to 21.7 degrees, R12 inlet temperature from 61.2 to 81.7 degrees and water mass flow rate from 6.7 to 32.9 grammes per second. A Fortran computer model of the condenser (originally prepared by Carrington[1]) has been modified to match the information available from experimental work. This program uses iterative segmental integration over the desuperheating, mixed phase and subcooled regions for the R12 working fluid, the water always being in the liquid phase. Methods of estimating the inlet and exit fluid conditions from the available experimental data have been developed for application to the model. Temperature profiles and other parameters have been predicted and compared with experimental values for the condenser for a range of evaporator conditions and have shown that the model gives a satisfactory prediction of the physical behaviour of a simple counterflow heat exchanger in both single phase and two phase regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review is given of general chromatographic theory, the factors affecting the performance of chromatographi c columns, and aspects of scale-up of the chromatographic process. The theory of gel permeation chromatography (g. p. c.) is received, and the results of an experimental study to optimize the performance of an analytical g.p.c. system are reported. The design and construction of a novel sequential continuous chromatographic refining unit (SCCR3), for continuous liquid-liquid chromatography applications, is described. Counter-current operation is simulated by sequencing a system of inlet and outlet port functions around a connected series of fixed, 5.1 cm internal diameter x 70 cm long, glass columns. The number of columns may be varied, and, during this research, a series of either twenty or ten columns was used. Operation of the unit for continuous fractionation of a dextran polymer (M. W. - 30,000) by g.p.c. is reported using 200-400 µm diameter porous silica beads (Spherosil XOB07S) as packing, and distilled water for the mobile phase. The effects of feed concentration, feed flow rate, and mobile and stationary phase flow rates have been investigated, by means of both product, and on-column, concentrations and molecular weight distributions. The ability to operate the unit successfully at on-column concentrations as high as 20% w/v dextran has been demonstrated, and removal of both high and low molecular weight ends of a polymer feed distribution, to produce products meeting commercial specifications, has been achieved. Equivalent throughputs have been as high as 2.8 tonnes per annum for ten columns, based on continuous operation for 8000 hours per annum. A concentration dependence of the equilibrium distribution coefficient, KD observed during continuous fractionation studies, is related to evidence in the literature and experimental results obtained on a small-scale batch column. Theoretical treatments of the counter-current chromatographic process are outlined, and a preliminary computer simulation of the SCCR3 unit t is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes work carried out to improve the fundamental modelling of liquid flows on distillation trays. A mathematical model is presented based on the principles of computerised fluid dynamics. It models the liquid flow in the horizontal directions allowing for the effects of the vapour through the use of an increased liquid turbulence, modelled by an eddy viscosity, and a resistance to liquid flow caused by the vapour being accelerated horizontally by the liquid. The resultant equations are similar to the Navier-Stokes equations with the addition of a resistance term.A mass-transfer model is used to calculate liquid concentration profiles and tray efficiencies. A heat and mass transfer analogy is used to compare theoretical concentration profiles to experimental water-cooling data obtained from a 2.44 metre diameter air-water distillation simulation rig. The ratios of air to water flow rates are varied in order to simulate three pressures: vacuum, atmospheric pressure and moderate pressure.For simulated atmospheric and moderate pressure distillation, the fluid mechanical model constantly over-predicts tray efficiencies with an accuracy of between +1.7% and +11.3%. This compares to -1.8% to -10.9% for the stagnant regions model (Porter et al. 1972) and +12.8% to +34.7% for the plug flow plus back-mixing model (Gerster et al. 1958). The model fails to predict the flow patterns and tray efficiencies for vacuum simulation due to the change in the mechanism of liquid transport, from a liquid continuous layer to a spray as the liquid flow-rate is reduced. This spray is not taken into account in the development of the fluid mechanical model. A sensitivity analysis carried out has shown that the fluid mechanical model is relatively insensitive to the prediction of the average height of clear liquid, and a reduction in the resistance term results in a slight loss of tray efficiency. But these effects are not great. The model is quite sensitive to the prediction of the eddy viscosity term. Variations can produce up to a 15% decrease in tray efficiency. The fluid mechanical model has been incorporated into a column model so that statistical optimisation techniques can be employed to fit a theoretical column concentration profile to experimental data. Through the use of this work mass-transfer data can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model is presented for steady fluid flow across microvessel walls through a serial pathway consisting of the endothelial surface glycocalyx and the intercellular cleft between adjacent endothelial cells, with junction strands and their discontinuous gaps. The three-dimensional flow through the pathway from the vessel lumen to the tissue space has been computed numerically based on a Brinkman equation with appropriate values of the Darcy permeability. The predicted values of the hydraulic conductivity Lp, defined as the ratio of the flow rate per unit surface area of the vessel wall to the pressure drop across it, are close to experimental measurements for rat mesentery microvessels. If the values of the Darcy permeability for the surface glycocalyx are determined based on the regular arrangements of fibres with 6nm radius and 8nm spacing proposed recently from the detailed structural measurements, then the present study suggests that the surface glycocalyx could be much less resistant to flow compared to previous estimates by the one-dimensional flow analyses, and the intercellular cleft could be a major determinant of the hydraulic conductivity of the microvessel wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variation in lichen growth rates poses a significant challenge for the application of direct lichenometry, i.e. the construction of lichen dating curves from direct measurement of growth rates. To examine the magnitude and possible causes of within-site growth variation, radial growth rates (RaGRs) of thalli of the fast-growing foliose lichen Melanelia fuliginosa ssp. fuliginosa (Fr. ex Duby) Essl. and the slow-growing crustose lichen Rhizocarpon geographicum (L.) DC. were studied on two S-facing slate rock surfaces in north Wales, UK using digital photography and an image analysis system (Image-J). RaGRs of M. fuliginosa ssp. fuliginosa varied from 0.44 to 2.63 mmyr-1 and R. geographicum from 0.10 to 1.50 mmyr-1.5. Analysis of variance suggested no significant variation in RaGRs with vertical or horizontal location on the rock, thallus diameter, aspect, slope, light intensity, rock porosity, rock surface texture, distance to nearest lichen neighbour or distance to vegetation on the rock surface. The frequency distribution of RaGR did not deviate from a normal distribution. It was concluded that despite considerable growth rate variation in both species studied, growth curves could be constructed with sufficient precision to be useful for direct lichenometry. © 2014 Swedish Society for Anthropology and Geography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Oil industry, oil and gas pipelines are commonly utilized to perform the transportation of production fluids to longer distances. The maintenance of the pipelines passes through the analysis of several tools, in which the most currently used are the pipelines inspection cells, popularly knowing as PIG. Among the variants existing in the market, the instrumented PIG has a significant relevance; acknowledging that through the numerous sensors existing in the equipment, it can detect faults or potential failure along the inspected line. Despite its versatility, the instrumented PIG suffers from speed variations, impairing the reading of sensors embedded in it. Considering that PIG moves depending on the speed of the production fluid, a way to control his speed is to control the flow of the fluid through the pressure control, reducing the flow rate of the produced flow, resulting in reduction of overall production the fluid in the ducts own or with the use of a restrictive element (valve) installed on it. The characteristic of the flow rate/pressure drop from restrictive elements of the orifice plate is deducted usually from the ideal energy equation (Bernoulli’s equation) and later, the losses are corrected normally through experimental tests. Thus, with the objective of controlling the fluids flow passing through the PIG, a valve shutter actuated by solenoid has been developed. This configuration allows an ease control and stabilization of the flow adjustment, with a consequent response in the pressure drops between upstream and downstream of the restriction. It was assembled a test bench for better definition of flow coefficients; composed by a duct with intern diameter of four inches, one set of shutters arranged in a plate and pressure gauges for checking the pressure drop in the test. The line was pressurized and based on the pressure drop it was possible to draw a curve able to characterize the flow coefficient of the control valve prototype and simulate in mockup the functioning, resulting in PIG speed reduction of approximately 68%.