959 resultados para Expenditure-based segmentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La segmentación de imágenes es un campo importante de la visión computacional y una de las áreas de investigación más activas, con aplicaciones en comprensión de imágenes, detección de objetos, reconocimiento facial, vigilancia de vídeo o procesamiento de imagen médica. La segmentación de imágenes es un problema difícil en general, pero especialmente en entornos científicos y biomédicos, donde las técnicas de adquisición imagen proporcionan imágenes ruidosas. Además, en muchos de estos casos se necesita una precisión casi perfecta. En esta tesis, revisamos y comparamos primero algunas de las técnicas ampliamente usadas para la segmentación de imágenes médicas. Estas técnicas usan clasificadores a nivel de pixel e introducen regularización sobre pares de píxeles que es normalmente insuficiente. Estudiamos las dificultades que presentan para capturar la información de alto nivel sobre los objetos a segmentar. Esta deficiencia da lugar a detecciones erróneas, bordes irregulares, configuraciones con topología errónea y formas inválidas. Para solucionar estos problemas, proponemos un nuevo método de regularización de alto nivel que aprende información topológica y de forma a partir de los datos de entrenamiento de una forma no paramétrica usando potenciales de orden superior. Los potenciales de orden superior se están popularizando en visión por computador, pero la representación exacta de un potencial de orden superior definido sobre muchas variables es computacionalmente inviable. Usamos una representación compacta de los potenciales basada en un conjunto finito de patrones aprendidos de los datos de entrenamiento que, a su vez, depende de las observaciones. Gracias a esta representación, los potenciales de orden superior pueden ser convertidos a potenciales de orden 2 con algunas variables auxiliares añadidas. Experimentos con imágenes reales y sintéticas confirman que nuestro modelo soluciona los errores de aproximaciones más débiles. Incluso con una regularización de alto nivel, una precisión exacta es inalcanzable, y se requeire de edición manual de los resultados de la segmentación automática. La edición manual es tediosa y pesada, y cualquier herramienta de ayuda es muy apreciada. Estas herramientas necesitan ser precisas, pero también lo suficientemente rápidas para ser usadas de forma interactiva. Los contornos activos son una buena solución: son buenos para detecciones precisas de fronteras y, en lugar de buscar una solución global, proporcionan un ajuste fino a resultados que ya existían previamente. Sin embargo, requieren una representación implícita que les permita trabajar con cambios topológicos del contorno, y esto da lugar a ecuaciones en derivadas parciales (EDP) que son costosas de resolver computacionalmente y pueden presentar problemas de estabilidad numérica. Presentamos una aproximación morfológica a la evolución de contornos basada en un nuevo operador morfológico de curvatura que es válido para superficies de cualquier dimensión. Aproximamos la solución numérica de la EDP de la evolución de contorno mediante la aplicación sucesiva de un conjunto de operadores morfológicos aplicados sobre una función de conjuntos de nivel. Estos operadores son muy rápidos, no sufren de problemas de estabilidad numérica y no degradan la función de los conjuntos de nivel, de modo que no hay necesidad de reinicializarlo. Además, su implementación es mucho más sencilla que la de las EDP, ya que no requieren usar sofisticados algoritmos numéricos. Desde un punto de vista teórico, profundizamos en las conexiones entre operadores morfológicos y diferenciales, e introducimos nuevos resultados en este área. Validamos nuestra aproximación proporcionando una implementación morfológica de los contornos geodésicos activos, los contornos activos sin bordes, y los turbopíxeles. En los experimentos realizados, las implementaciones morfológicas convergen a soluciones equivalentes a aquéllas logradas mediante soluciones numéricas tradicionales, pero con ganancias significativas en simplicidad, velocidad y estabilidad. ABSTRACT Image segmentation is an important field in computer vision and one of its most active research areas, with applications in image understanding, object detection, face recognition, video surveillance or medical image processing. Image segmentation is a challenging problem in general, but especially in the biological and medical image fields, where the imaging techniques usually produce cluttered and noisy images and near-perfect accuracy is required in many cases. In this thesis we first review and compare some standard techniques widely used for medical image segmentation. These techniques use pixel-wise classifiers and introduce weak pairwise regularization which is insufficient in many cases. We study their difficulties to capture high-level structural information about the objects to segment. This deficiency leads to many erroneous detections, ragged boundaries, incorrect topological configurations and wrong shapes. To deal with these problems, we propose a new regularization method that learns shape and topological information from training data in a nonparametric way using high-order potentials. High-order potentials are becoming increasingly popular in computer vision. However, the exact representation of a general higher order potential defined over many variables is computationally infeasible. We use a compact representation of the potentials based on a finite set of patterns learned fromtraining data that, in turn, depends on the observations. Thanks to this representation, high-order potentials can be converted into pairwise potentials with some added auxiliary variables and minimized with tree-reweighted message passing (TRW) and belief propagation (BP) techniques. Both synthetic and real experiments confirm that our model fixes the errors of weaker approaches. Even with high-level regularization, perfect accuracy is still unattainable, and human editing of the segmentation results is necessary. The manual edition is tedious and cumbersome, and tools that assist the user are greatly appreciated. These tools need to be precise, but also fast enough to be used in real-time. Active contours are a good solution: they are good for precise boundary detection and, instead of finding a global solution, they provide a fine tuning to previously existing results. However, they require an implicit representation to deal with topological changes of the contour, and this leads to PDEs that are computationally costly to solve and may present numerical stability issues. We present a morphological approach to contour evolution based on a new curvature morphological operator valid for surfaces of any dimension. We approximate the numerical solution of the contour evolution PDE by the successive application of a set of morphological operators defined on a binary level-set. These operators are very fast, do not suffer numerical stability issues, and do not degrade the level set function, so there is no need to reinitialize it. Moreover, their implementation is much easier than their PDE counterpart, since they do not require the use of sophisticated numerical algorithms. From a theoretical point of view, we delve into the connections between differential andmorphological operators, and introduce novel results in this area. We validate the approach providing amorphological implementation of the geodesic active contours, the active contours without borders, and turbopixels. In the experiments conducted, the morphological implementations converge to solutions equivalent to those achieved by traditional numerical solutions, but with significant gains in simplicity, speed, and stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MP2RAGE has proven to be a bias-free MR acquisition with excellent contrast between grey and white matter. We investigated the ability of three state-of-the-art algorithms to automatically extract white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) from MPRAGE and MP2RAGE images: unified Segmentation (S) in SPM82 , its extension New Segment (NS), and an in-house Expectation-Maximization Markov Random Field tissue classification3 (EM-MRF) with Graph Cut (GC) optimization4 . Our goal is to quantify the differences between MPRAGE and MP2RAGE-based brain tissue probability maps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose an innovative approach to tackle the problem of traffic sign detection using a computer vision algorithm and taking into account real-time operation constraints, trying to establish intelligent strategies to simplify as much as possible the algorithm complexity and to speed up the process. Firstly, a set of candidates is generated according to a color segmentation stage, followed by a region analysis strategy, where spatial characteristic of previously detected objects are taken into account. Finally, temporal coherence is introduced by means of a tracking scheme, performed using a Kalman filter for each potential candidate. Taking into consideration time constraints, efficiency is achieved two-fold: on the one side, a multi-resolution strategy is adopted for segmentation, where global operation will be applied only to low-resolution images, increasing the resolution to the maximum only when a potential road sign is being tracked. On the other side, we take advantage of the expected spacing between traffic signs. Namely, the tracking of objects of interest allows to generate inhibition areas, which are those ones where no new traffic signs are expected to appear due to the existence of a TS in the neighborhood. The proposed solution has been tested with real sequences in both urban areas and highways, and proved to achieve higher computational efficiency, especially as a result of the multi-resolution approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of video editing software requires faster and more efficient editing tools. As a first step, these tools perform a temporal segmentation in shots that allows a later building of indexes describing the video content. Here, we propose a novel real-time high-quality shot detection strategy, suitable for the last generation of video editing software requiring both low computational cost and high quality results. While abrupt transitions are detected through a very fast pixel-based analysis, gradual transitions are obtained from an efficient edge-based analysis. Both analyses are reinforced with a motion analysis that helps to detect and discard false detections. This motion analysis is carried out exclusively over a reduced set of candidate transitions, thus maintaining the computational requirements demanded by new applications to fulfill user needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images based on active contour models (snakes). In order to obtain an appropriate image for the use of snakes based techniques, the proposed algorithm combines a pre-processing stage including some traditional techniques (thresholding and median filter) with more sophisticated ones such as anisotropic filtering. The value selected for the thresholding was fixed to the 85% of the maximum peak of the image histogram, and the anisotropic filter permits to distinguish two intensity levels, one corresponding to the background and the other one to the foreground (glottis). The initialization carried out is based on the magnitude obtained using the Gradient Vector Flow field, ensuring an automatic process for the selection of the initial contour. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation. The results obtained suggest that this method provided results comparable with other techniques such as the proposed in (Osma-Ruiz et al., 2008).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante las últimas décadas se ha producido un fenómeno global de envejecimiento en la población. Esta tendencia se puede observar prácticamente en todos los países del mundo y se debe principalmente a los avances en la medicina, y a los descensos en las tasas de fertilidad y mortalidad. El envejecimiento de la población tiene un gran impacto en la salud de los ciudadanos, y a menudo es la causa de aparición de enfermedades crónicas. Este tipo de enfermedades supone una amenaza y una carga importantes para la sociedad, especialmente en aspectos como la mortalidad o los gastos en los sistemas sanitarios. Entre las enfermedades cardiovasculares, la insuficiencia cardíaca es probablemente la condición con mayor prevalencia y afecta a 23-26 millones de personas en todo el mundo. Normalmente, la insuficiencia cardíaca presenta un mal pronóstico y una tasa de supervivencia bajas, en algunos casos peores que algún tipo de cáncer. Además, suele ser la causa de hospitalizaciones frecuentes y es una de las enfermedades más costosas para los sistemas sanitarios. La tendencia al envejecimiento de la población y la creciente incidencia de las enfermedades crónicas están llevando a una situación en la que los sistemas de salud no son capaces de hacer frente a la demanda de la sociedad. Los servicios de salud existentes tendrán que adaptarse para ser efectivos y sostenibles en el futuro. Es necesario identificar nuevos paradigmas de cuidado de pacientes, así como mecanismos para la provisión de servicios que ayuden a transformar estos sistemas sanitarios. En este contexto, esta tesis se plantea la búsqueda de soluciones, basadas en las Tecnologías de la Información y la Comunicación (TIC), que contribuyan a realizar la transformación en los sistemas sanitarios. En concreto, la tesis se centra en abordar los problemas de una de las enfermedades con mayor impacto en estos sistemas: la insuficiencia cardíaca. Las siguientes hipótesis constituyen la base para la realización de este trabajo de investigación: 1. Es posible definir un modelo basado en el paradigma de lazo cerrado y herramientas TIC que formalice el diseño de mejores servicios para pacientes con insuficiencia cardíaca. 2. El modelo de lazo cerrado definido se puede utilizar para definir un servicio real que ayude a gestionar la insuficiencia cardíaca crónica. 3. La introducción, la adopción y el uso de un servicio basado en el modelo definido se traducirá en mejoras en el estado de salud de los pacientes que sufren insuficiencia cardíaca. a. La utilización de un sistema basado en el modelo de lazo cerrado definido mejorará la experiencia del usuario de los pacientes. La definición del modelo planteado se ha basado en el estándar ISO / EN 13940- Sistema de conceptos para dar soporte a la continuidad de la asistencia. Comprende un conjunto de conceptos, procesos, flujos de trabajo, y servicios como componentes principales, y representa una formalización de los servicios para los pacientes con insuficiencia cardíaca. Para evaluar el modelo definido se ha definido un servicio real basado en el mismo, además de la implementación de un sistema de apoyo a dicho servicio. El diseño e implementación de dicho sistema se realizó siguiendo la metodología de Diseño Orientado a Objetivos. El objetivo de la evaluación consistía en investigar el efecto que tiene un servicio basado en el modelo de lazo cerrado sobre el estado de salud de los pacientes con insuficiencia cardíaca. La evaluación se realizó en el marco de un estudio clínico observacional. El análisis de los resultados ha comprendido métodos de análisis cuantitativos y cualitativos. El análisis cuantitativo se ha centrado en determinar el estado de salud de los pacientes en base a datos objetivos (obtenidos en pruebas de laboratorio o exámenes médicos). Para realizar este análisis se definieron dos índices específicos: el índice de estabilidad y el índice de la evolución del estado de salud. El análisis cualitativo ha evaluado la autopercepción del estado de salud de los pacientes en términos de calidad de vida, auto-cuidado, el conocimiento, la ansiedad y la depresión, así como niveles de conocimiento. Se ha basado en los datos recogidos mediante varios cuestionarios o instrumentos estándar (i.e. EQ-5D, la Escala de Ansiedad y Depresión (HADS), el Cuestionario de Cardiomiopatía de Kansas City (KCCQ), la Escala Holandesa de Conocimiento de Insuficiencia Cardíaca (DHFKS), y la Escala Europea de Autocuidado en Insuficiencia Cardíaca (EHFScBS), así como cuestionarios dedicados no estandarizados de experiencia de usuario. Los resultados obtenidos en ambos análisis, cuantitativo y cualitativo, se compararon con el fin de evaluar la correlación entre el estado de salud objetivo y subjetivo de los pacientes. Los resultados de la validación demostraron que el modelo propuesto tiene efectos positivos en el cuidado de los pacientes con insuficiencia cardíaca y contribuye a mejorar su estado de salud. Asimismo, ratificaron al modelo como instrumento válido para la definición de servicios mejorados para la gestión de esta enfermedad. ABSTRACT During the last decades we have witnessed a global aging phenomenon in the population. This can be observed in practically every country in the world, and it is mainly caused by the advances in medicine, and the decrease of mortality and fertility rates. Population aging has an important impact on citizens’ health and it is often the cause for chronic diseases, which constitute global burden and threat to the society in terms of mortality and healthcare expenditure. Among chronic diseases, Chronic Heart Failure (CHF) or Heart Failure (HF) is probably the one with highest prevalence, affecting between 23 and 26 million people worldwide. Heart failure is a chronic, long-term and serious condition with very poor prognosis and worse survival rates than some type of cancers. Additionally, it is often the cause of frequent hospitalizations and one of the most expensive conditions for the healthcare systems. The aging trends in the population and the increasing incidence of chronic diseases are leading to a situation where healthcare systems are not able to cope with the society demand. Current healthcare services will have to be adapted and redefined in order to be effective and sustainable in the future. There is a need to find new paradigms for patients’ care, and to identify new mechanisms for services’ provision that help to transform the healthcare systems. In this context, this thesis aims to explore new solutions, based on ICT, that contribute to achieve the needed transformation within the healthcare systems. In particular, it focuses on addressing the problems of one of the diseases with higher impact within these systems: Heart Failure. The following hypotheses represent the basis to the elaboration of this research: 1. It is possible to define a model based on a closed-loop paradigm and ICT tools that formalises the design of enhanced healthcare services for chronic heart failure patients. 2. The described closed-loop model can be exemplified in a real service that supports the management of chronic heart failure disease. 3. The introduction, adoption and use of a service based on the outlined model will result in improvements in the health status of patients suffering heart failure. 4. The user experience of patients when utilizing a system based on the defined closed-loop model will be enhanced. The definition of the closed-loop model for health care support of heart failure patients have been based on the standard ISO/EN 13940 System of concepts to support continuity of care. It includes a set of concept, processes and workflows, and services as main components, and it represent a formalization of services for heart failure patients. In order to be validated, the proposed closed-loop model has been instantiated into a real service and a supporting IT system. The design and implementation of the system followed the user centred design methodology Goal Oriented Design. The validation, that included an observational clinical study, aimed to investigate the effect that a service based on the closed-loop model had on heart failure patients’ health status. The analysis of results comprised quantitative and qualitative analysis methods. The quantitative analysis was focused on determining the health status of patients based on objective data (obtained in lab tests or physical examinations). Two specific indexes where defined and considered in this analysis: the stability index and the health status evolution index. The qualitative analysis assessed the self-perception of patients’ health status in terms of quality of life, self-care, knowledge, anxiety and depression, as well as knowledge levels. It was based on the data gathered through several standard instruments (i.e. EQ-5D, the Hospital Anxiety and Depression Scale, the Kansas City Cardiomyopathy Questionnaire, the Dutch Heart Failure Knowledge Scale, and the European Heart Failure Self-care Behaviour Scale) as well as dedicated non-standardized user experience questionnaires. The results obtained in both analyses, quantitative and qualitative, were compared in order to assess the correlation between the objective and subjective health status of patients. The results of the validation showed that the proposed model contributed to improve the health status of the patients and had a positive effect on the patients’ care. It also proved that the model is a valid instrument for designing enhanced healthcare services for heart failure patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los medios sociales han revolucionado la manera en la que los consumidores se relacionan entre sí y con las marcas. Las opiniones publicadas en dichos medios tienen un poder de influencia en las decisiones de compra tan importante como las campañas de publicidad. En consecuencia, los profesionales del marketing cada vez dedican mayores esfuerzos e inversión a la obtención de indicadores que permitan medir el estado de salud de las marcas a partir de los contenidos digitales generados por sus consumidores. Dada la naturaleza no estructurada de los contenidos publicados en los medios sociales, la tecnología usada para procesar dichos contenidos ha menudo implementa técnicas de Inteligencia Artificial, tales como algoritmos de procesamiento de lenguaje natural, aprendizaje automático y análisis semántico. Esta tesis, contribuye al estado de la cuestión, con un modelo que permite estructurar e integrar la información publicada en medios sociales, y una serie de técnicas cuyos objetivos son la identificación de consumidores, así como la segmentación psicográfica y sociodemográfica de los mismos. La técnica de identificación de consumidores se basa en la huella digital de los dispositivos que utilizan para navegar por la Web y es tolerante a los cambios que se producen con frecuencia en dicha huella digital. Las técnicas de segmentación psicográfica descritas obtienen la posición en el embudo de compra de los consumidores y permiten clasificar las opiniones en función de una serie de atributos de marketing. Finalmente, las técnicas de segmentación sociodemográfica permiten obtener el lugar de residencia y el género de los consumidores. ABSTRACT Social media has revolutionised the way in which consumers relate to each other and with brands. The opinions published in social media have a power of influencing purchase decisions as important as advertising campaigns. Consequently, marketers are increasing efforts and investments for obtaining indicators to measure brand health from the digital content generated by consumers. Given the unstructured nature of social media contents, the technology used for processing such contents often implements Artificial Intelligence techniques, such as natural language processing, machine learning and semantic analysis algorithms. This thesis contributes to the State of the Art, with a model for structuring and integrating the information posted on social media, and a number of techniques whose objectives are the identification of consumers, as well as their socio-demographic and psychographic segmentation. The consumer identification technique is based on the fingerprint of the devices they use to surf the Web and is tolerant to the changes that occur frequently in such fingerprint. The psychographic profiling techniques described infer the position of consumer in the purchase funnel, and allow to classify the opinions based on a series of marketing attributes. Finally, the socio-demographic profiling techniques allow to obtain the residence and gender of consumers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comunicación presentada en el XI Workshop of Physical Agents, Valencia, 9-10 septiembre 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a multi-camera surveillance system based on the use of self-organizing neural networks to represent events on video. The system processes several tasks in parallel using GPUs (graphic processor units). It addresses multiple vision tasks at various levels, such as segmentation, representation or characterization, analysis and monitoring of the movement. These features allow the construction of a robust representation of the environment and interpret the behavior of mobile agents in the scene. It is also necessary to integrate the vision module into a global system that operates in a complex environment by receiving images from multiple acquisition devices at video frequency. Offering relevant information to higher level systems, monitoring and making decisions in real time, it must accomplish a set of requirements, such as: time constraints, high availability, robustness, high processing speed and re-configurability. We have built a system able to represent and analyze the motion in video acquired by a multi-camera network and to process multi-source data in parallel on a multi-GPU architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El gasto en ocio y vacaciones de los hogares puede depender de variables demográficas, geográficas y económicas asociadas al hogar o al sustentador principal. También afecta el tipo de hogar, cuya clasificación puede realizarse según los modelos considerados en la teoría del ciclo de vida del hogar (CVH). En este trabajo, se utiliza el programa estadístico SPAD para aplicar la metodología de la caracterización de la variable y analizar el poder explicativo de un total de doce variables sobre el gasto en “vacaciones todo incluido”, “servicios culturales” y otras cinco partidas destacadas del grupo “Ocio, espectáculos y cultura” de la Encuesta de Presupuestos Familiares (EPF) de España. El estudio confirma el interés de considerar variables como el número de dependientes para segmentar consumidores de ocio y vacaciones, pero no de variables más complejas basadas en modelos del CVH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Description based on 1912 issue.